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Hello and this is the tenth module of the course on Econometric Modelling. This is the last

module of the second part which is an overview of a classical linear regression model. So

here we are going to discuss hypothesis testing.

(Refer Slide Time: 00:42)

Hypothesis testing is basically a, we are not going to get into any testing procedure right

away. As you can see that the testing procedures are probably discussed at length in part 4

where we are getting into statistical inferences in a big way. So, I am here right now just

going to introduce you to the concept of hypothesis testing that is what is hypothesis, how the

testing is generally done without talking about any specific distribution or testing procedure.



(Refer Slide Time: 01:24)

So, we begin with hypothesis testing on . It can be . Most often we talk about only.β α 𝑜𝑟 β  β

A hypothesis is a statement that proposes a possible explanation for an observed phenomenon

and should be statistically testable. In statistics, the hypothesis is about a population

parameter and never for sample statistic. So, whenever we form the hypothesis, they are with

respect to the population parameter .α 𝑜𝑟 β

We have two types of hypotheses when we go for the testing of hypotheses. One is the null

hypothesis. A null hypothesis is a statistical hypothesis that is tested for possible rejection

under the assumption that it is true. So, since null implies void so most often the way null

hypotheses are formed, should ideally be rejected. It is always stated as equality.

And we have the second type of hypothesis while testing for the hypothesis. And that is the

alternative hypothesis. It contradicts the null hypothesis or represents the remaining outcomes

of interest. So null hypothesis is the void hypothesis which we generally expect to reject;

while the alternative hypothesis is probably the alternative that we are expecting to come out.



(Refer Slide Time: 02:54)

Consider the following regression results, that is, (refer slide time 2:59). So, so far this is

basically the estimated part of the observations on y that we have discussed. Now we did not

talk about how good this estimated value of 0.5091 is. So, this is a time when we actually just

introducing you that how we can test, whether how good this estimated parameter is. The

reliability of these estimates is measured by the coefficients’ standard errors.

Suppose it is of interest to test the hypothesis that the true value of beta is in fact 0.5. The

following notation would be used. This is how we write a null hypothesis (refer slide time

3:55). So, though we are trying to test whether we are working with the estimated parameter

that is 0.5091 which is actually denoted by , the null hypothesis is for the populationβ
^

parameter and not , its estimated counterpart.β
^

And H1 is the alternative hypothesis. And this is beta not equal to 0.5. This would be known

as a two-sided test since the outcomes of both beta less than 0.5 and beta greater than 0.5 are

subsumed under the alternative hypothesis. So not equal to 0.5 simply implies that it could be

greater than 0.5 or less than 0.5. Both the possibilities are kept. And that is why it is called

the two-sided hypothesis or two-sided test.



(Refer Slide Time: 04:54)

Alternatively, a one-sided test would be like (refer slide time 5:00). So null hypothesis is

always in terms of equality, while the alternative hypothesis is either beta equals beta greater

than 0.5 or beta less than 0.5. Here the null hypothesis that the true value of beta is 0.5 is

being tested against only one of the two alternatives.

There are two ways of testing a hypothesis that is two alternative approaches. They lead to

the same results; test of significance approach and confidence interval approach. Both

methods center on a statistical comparison of the estimated value of the coefficient and its

value under the null hypothesis. So, it compares the estimated value of the coefficient with a

statistical value that is given by the distribution or whatever testing procedures we follow.



(Refer Slide Time: 06:00)

In order to test the hypothesis, assumption 5 of the CLRM that is a Classical linear regression

model must be used, that is follows a normal distribution with zero mean and constant𝑢
𝑡

variance equals to sigma square. Now, this is actually not something we are going to readily

use. But to begin with, we can follow this assumption. Since depends partially on , it𝑦
𝑡

𝑢
𝑡

can be stated that if is normally distributed will also be normally distributed. And if you𝑢
𝑡

𝑦
𝑡

remember , or are population parameters. are estimated. They can varyα 
^

𝑎𝑛𝑑 β
^

α,  β α 
^

𝑎𝑛𝑑 β
^

from sample to sample.

But from one sample or for one particular sample is a variable. We can consider it to be𝑥
𝑡

non-random once the sample has been collected. So follows a normal distribution. And𝑢
𝑡

that is how would follow a normal distribution. Further, since the least square estimators𝑦
𝑡

are linear combinations of the random variables and linear combinations of the normal

random variables are also normally distributed, we have also following a normalα 
^

𝑎𝑛𝑑 β
^

distribution with mean and variance 0 and sigma square.

This is actually (refer slide time 7:35) because we know that the variance of an alpha hat and

beta hat is not exactly sigma square. We can denote them by sigma square alpha hat and



sigma square beta hat; while the (refer slide time 7:50). And similarly, we will have an

expression for sigma square alpha hat as well.

So we, for the time being, formally assumed that also follow a normal distribution.α 
^

𝑎𝑛𝑑 β
^

And that is because we have a large number of or we can have a large number of α 
^

𝑎𝑛𝑑 β
^

when we go for repeated samples from the same population.

(Refer Slide Time: 08:21)

Now standard normal variables can be constructed from by subtracting the mean andα 
^

𝑎𝑛𝑑 β
^

dividing by the square root of the variance and then replacing the square root of the variances

with the sample counterparts that is the calculated standard errors of the estimates. So, what

we obtain here is this; that is, (refer slide time 8:44).

Now, these two follow t-distribution with T -2 degrees of freedom. Why do they follow

t-distribution? That we would discuss at length while discussing the t-test in part 4 while we

deal with statistical inference at length. As such for the time being, we are also not going to

use these assumptions or these expressions much. Just to begin with I am introducing this

concept. So this implies that follow a t-distribution with T -2 degrees of freedom.α 
^

𝑎𝑛𝑑 β
^



(Refer Slide Time: 09:26)

So, under this approach first, the test statistic is calculated. Say for (refer slide time 9:36).

Now you would say that we did not know the value of beta. So, for that, we have the null

hypothesis. So, the null hypothesis is always about the beta. So, if the null hypothesis is beta

is equaled to 0 then my test statistic would be (refer slide time 9:55).

If the null hypothesis is (refer slide time 10:03). So, we can always construct a test statistic

given the null hypothesis or under the null hypothesis. Then a significance level is chosen.

The level of significance is defined as the probability of rejecting a correct null hypothesis. It

is often denoted by and not to be confused with the constant term alpha in a regressionα

model.

So, significance or level of significance is also denoted by alpha. And traditionally the level

is chosen to be 5 percent or 0.05 percent. But one can go for other significance levels also.

The other two most commonly used possibilities are 1 percent and 10 percent. Now given a

significance level, a rejection region and a non-rejection region can be determined. If a 5

percent significance level is employed this means that 5 percent of the total distribution, that

is 5 percent of the area under the distribution curve will be in the rejection region. And if my

test statistic falls in that region, we will be rejecting the null hypothesis, otherwise, we will

not.

(Refer Slide Time: 11:43)



So, this is actually explained using a diagram. So first we explain the two-sided hypothesis.

So, we are measuring x on the horizontal axis and the frequency on the vertical axis, the way

a distribution curve is generally drawn. And it may follow a normal distribution. It may

follow t-distribution. I am generally going for a nice bell-shaped curve for the time being.

So, if it is a two-sided test at a 5 percent level of significance then what we do is that we

divide 5 percent for both sides. So, we have 2.5 percent on each side. So, 2.5 percent

rejection region and this is another 2.5 percent rejection region and in the middle, we have 95

percent non-rejection region. And I calculate the test statistic based on the null hypothesis or

under the null hypothesis. If my test statistic falls in either of these regions then I will reject

the null hypothesis, otherwise, I will not reject the null hypothesis. So, we call it the

non-rejection region.

Now how do I understand whether it falls here? Of course, I will be having a critical value

corresponding to these points, and then if my calculated test statistic is larger than either of

these two critical values; that is smaller than this critical value and larger than this critical

value, that means my test statistic is falling either in this region or in this region.

Now we go for one-sided 5 percent hypothesis testing, that is, again the significance level is 5

percent. But this is a one-sided test where the alternative hypothesis is beta is less than a beta

star. So, we have here only 5 percent rejection region that is on the left, and 95 percent

rejection region consists of this entire region.



Similarly, we again go for another one-sided 5 percent significance level hypothesis test

where the alternative hypothesis is beta is greater than a beta star. So of course, we will be

considering the right-hand tail; and this is my 5 percent rejection region and the rest is

actually 95 percent non-rejection region. So graphically this is what we try to do.

(Refer Slide Time: 14:21)

So, the standard error is a measure of how confident one is in the coefficient estimate

obtained in the first stage. If a standard error is small the value of the test statistic will be

large relative to the case where the standard error is large. You remember while we calculated

test statistics, we have (refer slide time 14:44). So that is what is being mentioned here. That

for a small standard error it would not require the estimated and hypothesized values to be far

away from one another for the null hypothesis to be rejected. The significance level is also

sometimes called the size of the test and it determines the region where the null hypothesis

under test will be rejected or not rejected.



(Refer Slide Time: 15:33)

A significance level of 5 percent means that an extreme result would be expected only 5

percent of the time as a consequence of chance alone. For example, if the 5 percent critical

value for a one-sided test is 1.68 percent. So, I mentioned that in this bell-shaped curve there

will be critical values. So, suppose that critical value is 1.68 here. This implies that the test

statistic would be expected to be greater than this value, that is, 1.68, only 5 percent of the

time by chance alone.

One potential problem with the use of a fixed, for example, 5 percent size of the test is that if

the sample size is sufficiently large, and null hypothesis can be rejected, as the standard error

reduces with the increase in sample size. Therefore, some suggest that a lower size of the test,

for example, 1 percent should be used for large samples. So, for large samples, we would

recommend going for a lower sample size for the reasons explained here.



(Refer Slide Time: 16:45)

Now coming to the interval estimation. So, so far, we were talking about the significance

level approach. Now we are getting into the confidence interval approach. An Interval

estimate as opposed to a point estimate gives a range of values or intervals for the sample

estimate. The interval estimated is called the confidence interval. Thus, the confidence

interval for a parameter is an interval computed from sample data containing the true value of

the parameter with a certain level of confidence.

For example, (refer slide time 17:26). Then it means in repeated samples 95 percent of the

time the true value of will be contained within this interval. So, it is actually the long, it isβ

between this interval, this is actually close to the true value.

Constructing a 95 percent confidence interval is equivalent to using the 5 percent level in the

test of significance. So, they are basically the same concept. 5 percent significance level tells

us the possibility of rejecting a correct null hypothesis while 95 percent confidence interval

tells us that we can say with 95 percent confidence that our estimated or the true parameter

will lie within this interval.



(Refer Slide Time: 18:48)

So, the confidence interval is actually equal to 1 minus significance level or 1 minus . Theα

endpoints of the confidence interval are the confidence limit. So, when we are actually

drawing the lines for critical values; or this is basically the beginning of the significance level

and also the beginning of the confidence interval. So, confidence interval this way;

significance levels this way. And these are called confidence limits. This is a lower

confidence limit. This is the upper confidence limit.

Confidence interval is computed as sample estimate plus-minus confidence level, that is say,

95 percent, multiplied by the standard error of sample estimates. So, the lower confidence

limit, that is this, is sample estimate minus confidence level multiplied by the standard error

of sample estimate and the upper confidence limit is sample estimate plus confidence level

multiplied by the standard error of sample estimate. So, this is the upper confidence limit. If I

reduce my significance level to 1 percent, then my confidence interval would be 99 percent.

So, as I reduce the significance level my confidence interval grows.



(Refer Slide Time: 20:08)

The test of significance and confidence interval approaches always give the same conclusion.

Under the test of significance approach (refer slide time 20:19) will not be rejected if the

following condition holds. So, we are trying to draw an analogy between the significance

approach and the confidence interval approach.

So, we write that, we generally write that t critical, as I am trying to explain to you that I have

my t critical here, if it follows the T statistic then I have t critical value here and t critical

value here. Note that, when I am drawing the t critical values, they are actually equivalent to

lower confidence limit and upper confidence limit.

So, what we say under, level of significance approach is that if my calculated test statistic

which is (refer slide time 21:11), if it lies within this region then I am not going to reject the

null hypothesis. So minus t critical greater than equal to the test statistic less than equal to

plus t critical. So, for this the null hypothesis, beta equals beta star will not be rejected.

Now if I rearrange terms then I have (refer slide time 21:44 – 22:15). This is the confidence

interval approach. So, we can deduce the level of significance approach or from the level of

significance approach the outcome of the confidence interval approach. So that is why we say

that they both give the same results.

(Refer Slide Time: 22:30)



So, this is basically a table that compares the test of significance and confidence interval

approaches. So, this is how we first calculate the test statistic, (refer slide time 22:45). So, we

do not reject the null hypothesis since the test statistic lies within the non-rejection region.

Now for the confidence interval, we again continue with the same example. We find t critical

which are given here. And then we calculate the confidence interval as -0.0251 to 1.0433.

And since my hat lies within this interval, so we do not reject the null hypothesis since the β
^

test statistic lies within the non-rejection region. It basically leads to the same outcome.



(Refer Slide Time: 23:41)

Graphically what we show, is a 95 percent non-rejection region. This diagram I have almost

drawn on every slide. And this is my confidence interval. And this is the rejection region of

2.5 percent here and 2.5 percent here. I have also mentioned here the critical values; now

which implies that these two add up to their significance level. So again, they give us the

same results, confidence interval versus test of significance.

(Refer Slide Time: 24:17)

Now I talk about certain terminologies. A null hypothesis is either rejected or not rejected. It

is incorrect to say that the null hypothesis is accepted. So, so far you have also seen that it



while drawing that bell-shaped curve always mentioned non-rejection region. I never have

mentioned the acceptance region. So null hypothesis is accepted is incorrect.

When we do not reject the null hypothesis, it actually does not mean that we accept the null

hypothesis. This is also possible that some alternative null hypothesis can also not be

rejected. So, between two alternative null hypotheses which one we are going to accept? We

basically do not reject it. For example, my null hypothesis, one is 0.5. And the other null

hypothesis say is 0.6.

Now if suppose I do not reject any one of them or given the test statistic, I fail to reject any

one of them; but both cannot be accepted simultaneously. So that is why we say that we have

not rejected these. We do not become very affirmative about the fact that we have accepted

them, because we are not sure between these two which one can be accepted. And it is quite

possible that both of them are not rejected. If a null hypothesis is rejected at 1 percent, it is

obvious that it would be rejected for a larger size of the test.

Similarly, if a null is not rejected at 5 percent, it will not be rejected at-test sizes smaller than

5 percent, say 1 percent. If the null hypothesis is rejected at a 5 percent level it would be said

that the result of the test is statistically significant. If the null hypothesis is not rejected it

would be said that result of the test is not significant, or that is insignificant. So, these are the

terminologies that we use. If we do not reject a null hypothesis, we say that the result of the

test is insignificant or not significant and vice versa.



(Refer Slide Time: 26:44)

Now we talk about Type 1 and Type 2 errors. Type 1 error is rejecting a true null hypothesis,

probability is . So, the Type 1 error is the probability of rejecting a correct null hypothesis.α α

, the significance level measures the tolerance for or probability of committing a Type 1 error.

So, the moment we specify the significance level at 5 percent this means that the probability

of rejecting a correct null hypothesis is only 5 percent which is considered to be pretty low

and generally created by or resulted because of certain randomness in the results obtained or

data generated.

Type 2 error is not rejecting a false null hypothesis, probability is . That is Type 2 errorβ

measures the probability of not rejecting a null hypothesis that is incorrect or false. So,

measures the power of the test defined as the probability of rejecting an incorrect null1 − β

hypothesis. is the probability of rejecting an incorrect null hypothesis. is the1 − β β

probability of accepting a false null hypothesis.

So, this is how we prepare a table. This is a situation where the null hypothesis is true. We are

accepting it, not making any mistakes. We are rejecting a correct null hypothesis; we are

making a Type 1 error. The null hypothesis is false. So, when we accept a false null

hypothesis, we make a Type 2 error. If we reject a false, null hypothesis then there is nothing

wrong with it.



(Refer Slide Time: 28:33)

A significance level of 5 percent implies that it is only 5 percent likely that a null would be

rejected when it was in fact true. What happens if the size of the test is reduced, say from 5

percent to 1 percent? The chances of making a Type 1 error would be reduced but so would

the probability that the null hypothesis would be rejected at all, thus increasing the

probability of Type 2 error. So, there is always a tradeoff between Type 1 and Type 2 errors

while choosing a significance level. The only way to reduce the chances of both is to increase

the sample size or to select the sample with more variation.



(Refer Slide Time: 29:21)

Now we talk about the final thing that is the p-value or the exact level of significance. p-value

stands for probability value. It is the exact probability of committing a Type 1 error, that is,

the probability of rejecting a correct null hypothesis. It is also defined as the lowest

significance level at which the null hypothesis can be rejected. If the test statistic is large in

absolute value, the p-value will be small and vice versa.

So, p-values are most often reported by the software, whatever software you use, you would

see that a p-value is reported. So, on the basis of the p-value reported we can determine

whether my null is rejected or not rejected, at what significance level 5 percent, 1 percent, 10

percent, and so on. So, p-values are basically the exact probability of committing a Type 1

error. A very small p-value implies the probability of committing a Type 1 error is absolutely

or almost 0 and this happens when the sample size is very large.



(Refer Slide Time: 30:34)

So that brings us to the end of module 10 on hypothesis testing. These are the books that I

have followed for discussion on these topics. Thank you.


