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Hello and welcome back to the course on Econometric Modelling. So in Module 11 -13, I had

discussed Multiple Regression Analysis or introduced the Multiple Regression Analysis from

different dimensions including its measurement, properties, assumptions and then certain other

things in like inferences and adjusted r square.

(Refer Slide Time: 00:54)

Now I will be talking about problems of Multicollinearity. This is actually not a part of the

classical linear regression model or not a part of the assumptions under classical linear regression

model but it is a part of the Gauss Markov Theorem. If you remember Gauss Markov theorem

assumes that there should not be any collinearity among the independent variables, specifically

perfect collinearity among the independent variables.



(Refer Slide Time: 01:28)

Now this issue is actually addressed here i.e. the problem of multi-collinearity. So, we again

begin with our population model which is y equals x beta plus u. Now x is n by k matrix, the

rank of x if less than k then the uniqueness of the estimated parameters breaks down. Now we

are specifically are talking about the problem of perfect multi collinearity, what happens?

If rank of x is less than k then we can get x multiplied by a equals to 0 where a is any constant.

So we have found beta hat such that y minus y hat is minimized where X beta hat equals to y hat.

So this is the standard thing that we have minimized the residual sum of square in order to get a

beta hat and from there we have X beta hat equals to y hat. But since x a is equals to 0 we can

also write X beta hat plus a equals to y hat.

Therefore to get unique results we need to have the rank of X, X equals to k otherwise this

problem of uniqueness will break down. So columns of X are linearly independent if the columns

of x are linearly dependent such that there exists some theta of dimension k by 1 for which X

theta equals to 0 then the problem of OLS breaks down we do not get beta hat because if OLS

gives us beta tilde then X beta tilde equals to y hat.

But X beta tilde plus theta is also equals to y hat and that is why we do not get unique estimates,

right? So this is the problem of perfect multicollinearity. Most of the statistical packages actually



do not even provide results if there is perfect multicollinearity. So this is a problem which is

actually taken care of by statistical packages which are used to estimate multiple regression

models.

(Refer Slide Time: 03:40)

But the problem is actually of concern when we have simple multicollinearity so not perfect

multicollinearity but multicollinearity of some level which actually implies highly correlated

regressors. Columns of X are linearly independent so not a problem therefore beta hat can be

estimated but the standard error of beta hat becomes large and t statistic becomes small. It

becomes difficult to prove statistical significance this is often referred to as the problem of

multicollinearity.

In order to prove and assess what kind of problem multicollinearity causes, it should be noted for

us that the r square studied so far is conventionally known as the centered r square. So now we

are going to introduce something which is called uncentered r square and explain that what kind

of problem we might associate or might have or might associate with the problem of

multicollinearity.



(Refer Slide Time: 04:44)

So we define the centered r square as below:

This is centered around the mean value of the series. So y hat minus y bar prime multiplied by y

hat minus y bar this is my explained sum of square and what it is explaining? It is explaining the

deviation of the estimated y hat from the mean of the series y, so it is centered around the mean

values and that is why it is called centered r square.

Similarly in the denominator i have y minus y bar prime multiplied by y minus y bar, so the

original values are also centered around their mean values. This is our total sum of squares. Now

uncentered r square is calculated as



You can see that it is not centered around any value and that is why it is called uncentered r

square.

Now let us split the dependent variable or the matrix of dependent variable x into two

components; one is one single variable X1 and the rest are included in X2. So X1 is a n by 1

vector there is only one variable of course corresponding to that variable I have n observations

and X2 contains n by k minus 1 variable provided that I have total k variables including the

constant term. So X2 is of dimension n by k minus 1.

We need to show that if X1 is highly correlated with X2 that is X1 almost lies in the column

space of X2. Then standard error of beta 1 hat will be very large. If X1 that is this variable is

highly correlated with all the other variables or some of the other variables then the standard

error of beta 1 hat will be very large and what will be the problem? If you remember while

discussing t inferences in the context of simple regression analysis or even in the context of

multiple regression analysis what do we have?

In the numerator, we have beta hat minus the null hypothesis value of the population parameter

beta divided by the standard error of beta hat. So if the standard error of beta hat becomes large it

goes up. If the standard error beta hat becomes very large then the entire thing becomes very

small and then it is actually difficult to reject the null hypothesis because it will fall in one of the

or most of in the left side rejection region.

Now to show that how these things happen that y presence of high correlation between X1 and

the other variables contained in X2 causes the problem of multicollinearity, we will first consider

or reconsider the projection matrices that I had discussed in the previous to the previous module.

So there I defined one orthogonal projection matrix m which was i minus x into x bar x inverse x

prime.

Similarly, I have the orthogonal projection matrix M2 here defined in terms of x 2, so i minus x 2

into x 2 prime x 2 inverse x 2 prime.
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Following the Frisch-Waugh Lovell theorem we run a regression of x1 on x2 and collect the

residuals M2 X1, so we are trying to find out how much of X1 is explained by X2 that is all the

other independent variables. In order to do that first running a regression of X1 on X2 and

collecting the residuals then we run a regression of y on X2 and collect the residuals M2y.

Now if we regress M2y on M2 X1 then we will be obtaining the estimated value of beta 1 hat.

Now why we are taking this indirect route following Frisch-Waugh Lovell theorem? Because we

have a purpose to prove that this correlation between X1 and X2 can be troublesome for testing

the significance or while testing the significance of beta 1 hat. So we write beta 1 hat as see you

remember beta hat is x prime x inverse x prime y where x is the independent variable, y is the

dependent variable. (Refer to slide time 08:28)

So here in this context, my independent variable is M2 x1 and my dependent variable is m 2 y so

in a similar fashion when I estimate beta 1 hat x prime x inverse will be replaced with (x1) M2 X

1 prime which is X1 prime M2, M2 X1. So again M2 x 1 whole inverse multiplied by x1 prime M2

y so this actually is x1 prime M2 prime M2 x1 inverse x1 prime M2 prime M2 y right, if you

remember M2 is a symmetric matrix so M2 prime M2 is actually M2, M2 and they are also

idempotent matrices. So M2, M2 is actually equal to M2 and that is why we have this expression

and this expression right.



Now if I consider the variance of beta 1 hat then again by drawing analogy if you remember the

variance of the beta hat is sigma square x prime x inverse right. So similarly, this is my

independent variable so it would be M2 x 1 prime M2 x1 whole inverse and M2 x1 prime M2 x1

whole inverses this expression which is equivalent to this expression so that is how we have

sigma square u x 1 prime M2 x1 inverse.

After that I replace the value of M2, I write the expression of M2 here, M2 is i minus x2, x2 prime

x2 inverse x2 prime. So when I replace the value of M2 here I have x1 prime multiplied by i

multiplied by x1. So x1 prime x1 and then this expression is coming in between x1 prime and x1

whole inverse taking out x 1 prime x 1 common out I have 1 minus the whole expression here

divided by x1 prime, x1.
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Now the uncentered r square from a regression of x1 on x2 will be x 1 hat prime x1 hat divided

by x1 prime x1. This is simply because the uncentered r square from a regression of y on x where

the population model is y equals x beta, we had written that the uncentred r square is y hat prime

y hat divided by y prime y. So in a similar fashion when we are regressing x1 on x2 then our

estimated x1 will be denoted by x1 hat.

So we have x 1 hat prime x 1 hat divided by x 1 prime x 1, so similar to y hat equals to x beta hat

equals to p x y where p x is where we can have another projection matrix and that is p2, so p2 M2

is actually i minus p2 the way m used to be equals to i minus p. So this is how we define p2

another projection matrix. And if you remember that p x y equals to x beta hat right equals to y

hat p x y equals to y hat.

So now this is something which we are going to utilize next, So x1 hat prime x1 hat will be

basically p 2 x1 prime p 2 x1 since y hat equals to p x y x1 hat will be equals to p x2 or rather p2

x1. So p2 x1 prime multiplied by p2 x1. Now expanding I have x 1 prime p 2 prime p 2 x 1

which is x 1 prime p 2 x 1 and now we replace the value of p2 so this is the value of p2 or

expression for p2 (refer slide time 12:02).

So x1 prime x2, x2 prime x 2 inverse x 2 prime x 1. This is what I have got for x1 hat prime x1

hat right now. This was my variance expression in the previous to previous slide I have just



rewritten it here and then you can see that this expression is exactly the expression here which is

x1 hat prime x1 hat. So I can always write it here, this is in the bracket i will be having 1 minus x

1 hat prime x1 hat divided by x1 prime x1.

Now remember this was actually the uncentered R square when we are regressing x1 on x2 so

this expression is replaced with uncentered R square, R square uc and the rest of the things

remain the same, we call it equation 1 (refer slide time 12:02). So the above expression shows

that the variance of beta 1 hat depends on 3 factors; first of all the error variance, then the second

thing is x1 prime x1 which is the total sum of square when we are regressing x1 on the rest of the

independent variables and the uncentered r square.

So these are the 3 things on which the variance of beta 1 hat depends. Note that R square uc can

also be denoted by Rj square where it refers to the R square obtained by regressing any

independent variable j on the rest of the regressor, we can also call it auxiliary regression of x 1

on the rest of the independent variables.

(Refer Slide Time: 15:46)



So in equation 1; a larger sigma u square means larger variances for the OLS estimators. I show

you the expression once again. This has an inverse right which means this actually can be written

as sigma square u divided by x 1 prime x 1 into 1 minus R u c square right, so sigma square u is

in the numerator x1 prime x1 multiplied by 1 minus R u c square is actually in the denominator.

So larger sigma square u means larger variances for the OLS estimators because more noise in

the equation makes it more difficult to estimate the partial effect of any of the independent

variables on y, this is reflected in higher variances for the OLS slope estimators?

Second, the larger the total variation in x1 is the smaller is the variance of beta 1 hat. So if you

remember x1 prime x1 measuring the total variation in x1 is in the denominator. So larger the

value of the total variation in x1 smaller will be the variance of beta 1. Thus everything else

being equal for estimating beta 1. We prefer to have as much sample variation in x1 as possible.

(Refer Slide Time: 17:13)



Now remember that y prime y was termed as the total sum of square, drawing analogy x1 prime

x1 can be called total sum of square 1. That is a total sum of square when we are regressing the

first variable or variable x 1 on the rest of the independent variables.

And generalizing it to the jth independent variable we may call it TSS j. Although it is rarely

possible for us to choose the sample values of the independent variables, there is a way to

increase the sample variation in each of the independent variables, increase the sample size. So

in fact when sampling randomly from a population TSS j increases without bound, the sample



size gets larger and larger. This is the component of the variance that systematically depends on

the sample size.

And that is why this problem can always be handled or managed by increasing the sample size.

So this is a systematic component that can be actually handled by increasing the sample size

because R square measures goodness of fit a value of R j square close to 1 indicates that most

variations in x j is explained by the rest of the independent variables say x2. This means that x j

and the rest of the variables or some of them are highly correlated.

So higher the value of R j square, the closer it is to 1 which implies that x1 is actually explained

by the rest of the independent variables. This implies that these independent variables are highly

correlated. If R j square increases to 1 then x j would mostly lie in this column in the column

space of x2 and the variance of beta j hat will be very large. Thus a high degree of linear

relationship between xj and x2 can lead to large variances for the OLS slope estimators.

Alternatively, for a given sigma u square and tss j, the smallest variance of beta j hat is obtained

when R j square equals 0. See a small variance of beta j hat is a desirable property even though

multicollinearity actually does not violate the assumption of efficiency but because of

multicollinearity variance of beta j tends to increase so this is not a desirable property.

Alternatively when R j square is actually close to 0, then this implies that very little of x1 is

explained by the other independent variables, xj has zero sample correlation with other

independent variables and as a result of which we may think that there is little multicollinearity

among the independent variables or at least between x1 and rest of the independent variables.

(Refer Slide Time: 20:19)



So this figure actually shows the relationship between variance of beta j hat and the R square

from the auxiliary regression of x j on the other independent variables. As R j squared

approaches 1 variance of beta j hat actually keeps on increasing right, we have not mentioned

any specific value because it can be anything but then this shows that R j square approaching 1

increases the variance of beta j hat.

(Refer Slide Time: 20:53)

Since multicollinearity violates none of the classical linear regression model assumptions the

problem of multicollinearity is not really well defined. It does not define how close R j squared

has to be to 1 in order to consider a possible multicollinearity problem.



Because even if R j square is close to say, 0.9, so which is actually close to 1, whether that

inflates variance of beta j hat or not depends on the other two factors; that is the variance of the

error term as well as the total sum of square obtained from the regression of x1 on the other

independent variables. So because for statistical inference what matters is how big beta j hat is to

its variance just a large value of R j square actually cannot always you know lead to a large

variance of beta j hat.

So it is possible that even if R j square is large, the variance of beta j hat is small because of the

other two factors, the other two factors could be offsetting factors as well. So since we have three

components we are determining the value of the variance of beta j hat of course one important

component is R j square but then there can be other offsetting factors as well. Since our main

concern is on the value of the variance of beta j hat, the problem of multicollinearity is actually

not that well defined or well-structured.

(Refer Slide Time: 22:32)

Arthur Goldberger in his context coined the term micronumerosity which he defines as the

problem of small sample size. As the sample size increases standard error tends to 0. Since x1

prime x1 tends to infinity that is TSS becomes infinity, large or larger. Therefore in order to

avoid the problem of multicollinearity large sample should be taken. So one solution is to take a



large sample where an increase in x1 prime x1 would actually offset any possibility of a high r j

square value.

Another way is to consider principal component analysis which combines related variables into a

single variable. Another important point is that a high degree of correlation between certain

independent variables can be irrelevant depending on which variable is the focus of our

discussion okay.

(Refer Slide Time: 23:31)

So in economics and finance control variables are often included in order to isolate the causal

effect of a particular variable. For example in looking at the relationship between loan approval

rates and percentage of minorities in a neighborhood we might include variables like average

income, average housing value, measures of creditworthiness, and so on, because these factors

need to be accounted for in order to draw a causal conclusion about discrimination. So we are

actually looking into the relationship or looking at the relationship between loan approval rates

and the percentage of minorities in a neighborhood.

So trying to ideally find out whether there is any discrimination in loan approval depending on

whether an individual belongs to a particular minority or not. So in this context we also include

certain demographic variables like income and the prices of their houses and their credit



worthiness etc. So income, housing prices, and credit worthiness all are included as control

variables because they can also impact the loan approval rate, right.

Now they are actually highly correlated with each other but high correlations among these

controls do not make it more difficult to determine the effects of discrimination because our

focus is on something different right. We need to include these control variables because they

also impact and they might have also you know contributed to the determination of in loan

approval rate.

So these cannot be ignored. If these are ignored then that would lead to some other problems in

regression analysis but it is quite possible that they are highly co-linear among themselves of

course not perfectly collinear but highly correlated but still, they need to be included and that

does not hamper our main focus because they actually control variables and our focused or

variable of focus is something different.

(Refer Slide Time: 25:48)

Statistics designed to diagnose the severity of multicollinearity is prone to misuse because there

is no guidelines regarding which value of R j square or variance of beta j hat can be considered

as indicative of multicollinearity. Nevertheless, the most commonly used statistic is the variance

inflation factor and tolerance. Tolerance is just the reciprocal of VIF. So VIF for the jth



coefficient is calculated as 1 upon 1 minus R j square. So this is again the regression or the R

square from the auxiliary regression of the jth independent variable on the rest of the

independent variables.

VIF is precisely the term in variance of beta j hat that determines the correlation between x j and

the other explanatory variables. So instead of looking at variance of beta j hat we are focusing on

only that component which is related to the correlation among the independent variables. So this

is given by a measure called VIF.

(Refer Slide Time: 26:55)

However the problem with VIF is that there is no benchmark cut-off, sometimes the value of 10

is chosen which implies that if VIF is above 10 r j square is above 0.9. A high VIF does not

imply that the variance of beta j hat is too large as it also depends on sigma u square and TSS j,

this has already been discussed.

Finally, multicollinearity does not violate BLUE that is the Best Linear Unbiased Estimator. This

is primarily because as we have mentioned in the beginning itself that it is actually not part of the

Classical Linear Regression Model Assumptions. So that is how probably the problem remains

less structured.
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Now summing up what to do in the presence of multicollinearity, first of all, ignore it if the

model specification is adequate in terms of magnitude and signs of the coefficients. If the aim of

the model building is to generate predictions because the parameter estimates are still consistent

unbiased and efficient in the presence of multicollinearity.

Predictions can always be generated and predictions are always better when we have more and

more independent variables regardless of whether they are highly correlated with each other or

not. So depending on what is my focus or goal, I can ignore some, certain amount of presence of

multicollinearity among the variables.

The second is, drop one of the collinear variables if theoretical empirical process allows us to do

so, That is, it is not a very important variable which needs to be retained in the model

specification. Third, transform the correlated variables into a ratio to replace the individual

variables. Again if the theoretical structure allows us to do so. So instead of having individual

variables, we can actually have a ratio of the two variables.

And finally, increase the sample size as it is often said that near multicollinearity is more a

problem with the data than with the model. So model specification actually has nothing to do

with multicollinearity. Multicollinearity could be present in the form of data that we collect, of

course certain variable specifications may entail multicollinearity but as has already been



discussed and, also theoretically proven that by increasing the sample size we can actually

partially take care of the problem of multicollinearity.

Because the presence of multicollinearity is going to inflate the variance and having a larger

sample size or a large sample size we can have an opposite impact on the variance. So inflation

in variance will be taken care of by an increase in the total sum of the square from the auxiliary

regression of one independent variable on the rest of the independent variables. So that is all

about multicollinearity.
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These are the references that I have followed. Thank you.


