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Hello and welcome back to the course on Econometric Modelling, this is Module 17.
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Module 17 is part of Part 3 that deals with multiple regression analysis and several diagnostic

tests. So, once we are through with the discussion of multiple regression analysis and after that,

we discussed the problem of multicollinearity which is a problem outside the CLRM

assumptions that it does not as such violate any CLRM assumptions. Then we discussed omitted

variable and measurement error problems, which can lead to unbiased and inconsistent

estimators.



(Refer Slide Time: 01:02)

In the next two modules, we will be discussing the problem of Heteroscedasticity. So, module 17

first introduces the problem of Heteroscedasticity, how we define it and what does its presence

means, what kind of problem it actually leads to, and also, we talk about the detection of

Heteroscedasticity that is how we can test for the presence of Heteroscedasticity. And in the next

module, we will talk about how to deal with Heteroscedasticity.
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So, first, we have already introduced Homoscedasticity. So, homoscedasticity means that the

actual values of the error terms in the sample will sometimes be positive, sometimes negative,

sometimes relatively far from 0, sometimes relatively close, but there will be no a priori reason

to anticipate a particular erratic value in any given observation. So, since, we are making

assumptions about the error variance.

So, what does this error variance imply, that is, first of all, is explained here that the deviations

from the error term from its mean value could always be there, but then if there is no systematic

pattern in it, and we do not have any reason to anticipate a particularly erratic or we anticipate a

particularly erratic value in any given observation and we do not anticipate any systematic

pattern, then we have heteroscedastic errors.

To put it another way, the probability of u the population error reaching a given positive or

negative value will be the same in all observations. When this condition is not fulfilled, we have

the problem of Heteroscedasticity or heteroscedastic error terms. So, we are basically focused

here on the probability of u reaching a positive or negative value that is u taking up a positive or

negative value should be actually constant and there is no systematic pattern.
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Therefore, homoscedasticity fails whenever the variance of the unobservables changes across

different segments of the population, where the segments are determined by the different values

of the explanatory variables. So, that is one possibility that we have different segments we can

depending on the independent variable, we have different segments of the dependent variable

and for different segments, we have different error variations.

So, then we can associate some non-constant probability in the dispersion of the population error

from its mean value. Now, consider the multiple linear regression model the standard multiple

linear regression model where we have k plus 1 variables, the homoskedasticity assumption

played no role in showing whether OLS was unbiased or consistent.

It is important to remember that heteroscedasticity does not cause bias or inconsistency in the

OLS estimators of the . So, unbiasedness and consistency property remains even when theβ
𝑗
𝑠

errors are not homoscedastic or the errors are heteroscedastic.

(Refer Slide Time: 04:21)

The estimators of the variances, variance of are biased without the homoscedasticityβ
𝑗

^

assumption. So, the problem is that if we do not have homoscedasticity then the estimators of the



variances that is the variance of , which we actually measure as (refer slide time:4:40) to recapβ
𝑗

^

that is these estimators are actually biased if the errors are heteroscedastic.

Since the OLS standard errors are based directly on these variances, they are no longer valid for

the construction of confidence intervals and t statistics. So, this is the error variance. Now, when

we have heteroscedasticity this error variance is no more sigma square, it is something else we

can call it sigma , and it is varying from observations to observations. And the standard errorσ2𝑖

of the estimated parameters that is the standard error of , is basically root over the variance ofβ
𝑗

^

.β
𝑗

^

Now, what is happening is that, since we do not have homoscedastic errors or we have

heteroscedastic errors. So, that is why the standard errors are no longer valid for constructing

confidence intervals and t statistics, they are not valid for other statistics also. If we talk about f

statistics or F- tests conducted in order to test for joint significance of several hypotheses, we

have not talked about f test at length as of now, that is why I would not talk much about F-test

right here.

In summary, the statistics we use to test hypothesis under the Gauss Markov assumptions are not

valid in the presence of Heteroscedasticity. So, the Gauss Markov assumptions that we consider

there were 5 assumptions, one of them was the assumption of homoscedasticity. So, in presence

of Heteroscedasticity, that assumption is not fulfilled.
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Formally, Heteroscedasticity is defined as (refer slide time: 6:30). In the presence of

heteroscedastic errors, the problems that arise are first Var , is biased, which I have justβ
𝑗

^

mentioned, that is (refer slide time: 6:55). Therefore, they are no longer valid for the construction

of t-statistic and F-statistic as they do not follow t distribution and F distribution anymore

respectively in the presence of Heteroscedasticity.

And the second thing is that the estimated parameter that is , is not BLUE which is the bestβ
𝑗

^

linear unbiased estimator. So, they could be still linear, they are still unbiased, but they are not

best that is they are not the most efficient estimators anymore. So, it is no longer the most

efficient estimator in its class. So, the property of OLS that is OLS estimators are BLUE is

violated in the presence of Heteroscedasticity.
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Now, we graphically illustrate Heteroscedasticity. So, the presence of Heteroscedasticity can be

also observed or detected through the graphical presentation, we present here a typical scatter

diagram between x and y. So, we have y is measured on the vertical axis, x is measured on the

horizontal axis, and if y were an increasing function of x. So, given the line plotted between x

and y, it shows that y is an increasing function of x which implies that as x increases y also

increases.

We see that although the observations are not necessarily farther away from the non-stochastic

component of the relationship represented by the line (refer slide time: 8:28) there is a tendency

for their dispersion to increase as x increases. So, this is my line, which is the non-stochastic

component.

If you remember, initially I had mentioned that (refer slide time: 8:47) can be divided or

decomposed into 2 components, this component is called the stochastic component that is the

random term and this is a non-stochastic component, or essentially what we are trying to do is

that through all these estimation processes, we are trying to estimate this non-stochastic

component.

So, this is my non-stochastic component, which is (refer slide time 9:19), whatever you call it,

and what we observe the presence of Heteroscedasticity, we can see that as x increases y also



increases, but the dispersions are increasing. So, if I draw lines measuring the dispersions then

you can see that the dispersions are increasing specifically, they are higher during this range,

which may indicate that at least the variance is not constant.

The error variances or the differences between the plotted line and the actual value, so that is the

error term, their differences or their deviations from the mean is actually not constant over time

or may not be constant over time or the probability of the deviation from the mean value is not

same for all observations. So, this is how we can observe Heteroscedasticity.

(Refer Slide Time: 10:19)

Another illustration is like when we are plotting the estimated residuals that is the sample

counterpart of the population error terms, we have residuals plotted against one of the

independent variables say . In case we have a multiple regression analysis and we have more𝑥
2

than one independent variable. So, is one independent variable and is plotted against them.𝑥
2

𝑢
^

So, suppose a regression has been estimated and the residuals plotted against one of the𝑢
^

independent variables as shown in the graph, it is clearly evident that the errors are𝑥
2

heteroscedastic that is, although their mean value is roughly constant, their variance is increasing

systematically with . Suppose this is the mean if this is 0, then you can understand that the𝑥
2



positive value and the negative value roughly cancel out with each other, and because of which

the mean of this residual term is equal to 0.𝑢
^

So, if this is the mean have the deviation of from its mean value is systematically increasing𝑢
^

𝑢
^

as the value of increases. So, this is a very clear-cut pattern of the presence of𝑥
2

Heteroscedasticity. But graphical inspection of Heteroscedasticity is not advisable.

(Refer Slide Time: 11:43)

So, when we try to detect the presence of Heteroscedasticity graphical inspection is not

advisable, because if we plot against another independent variable, say we may not observe𝑢
^

𝑥
3

any heteroscedastic pattern.

So, we have to individually plot the residuals against each and every independent variable and

then some of may show up some kind of a typical pattern in the movements or in the dispersion

of the error term or the residuals terms from its mean. Further, the error variance may change

over time, instead of changing with any particular independent variable.

So, with any independent variable, we may not observe any typical pattern, but the error

variances are increasing over time. So, this is a special kind of case, which is often handled in

time series analysis specifically, but also applicable in the context of cross-sectional data. And



they are called autoregressive conditional Heteroscedasticity. And these kinds of models we will

be dealing with in later modules.

So, there are several formal statistical tests for Heteroscedasticity. And we will discuss 4 such

tests here, namely, the Spearman Rank Correlation Test, The Goldfeld-Quandt Test, which was

suggested by Goldfeld in 1965, The Breusch-Pagan Test, and the Whites Test, these are the 4

alternative tests, which we are going to discuss here.

(Refer Slide Time: 13:09)

So, we begin with the Spearman rank correlation test. The Spearman rank correlation test

assumes that the variance of the disturbance term is either increasing or decreasing as x

increases. So, there is a clear-cut pattern either increasing or decreasing between x and the

residuals. And therefore, there will be a correlation between the absolute size of the residuals that

is absolute value or mod value of , and the size of x in an OLS regression.𝑢
^

The data on x and the absolute values of the residuals are both ranked. And the rank correlation

coefficient is calculated like this. So, this is denoted by (refer slide time: 13:51). I will explain

the procedure using an example.
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But before that, let me tell you that under the assumption that the population correlation

coefficient is 0, the rank correlation coefficient has a normal distribution with 0 mean and

variance in large samples. The appropriate test statistic is, therefore (refer slide time:1/(𝑛 − 1)

14:28), follows a normal distribution with mean 0 and variance , then what would be1/(𝑛 − 1)

the standard normal distribution?

The standard normal distribution would be (refer slide time: 14:48- 15:04), and this is essentially

the test statistic that we would go for. In case we are going for it T-test or if we are going to

check it against in a standard normal distribution in both cases this is my test statistic and the null

hypothesis of homoscedasticity will be rejected at the 5 percent or 1 percent level if its absolute

value is greater than 1.96 or 2.58, which corresponds to the 1 percent level using a two-tailed test

following the standard normal distribution.

If there is more than one explanatory variable in the model the test may be performed with any

one of them. So, there is certainly some randomness involved in it that which variables you are

going to pick up or you may consider all the possible variables alternatively, that is one by one.
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Now, this is an example where we are considering GDP values or GDP figures of 28 countries.

So, we are running an OLS regression of manufacturing output on GDP for a set of 28 countries,

and this yields the following results. So, we have (refer slide time: 16:13). So, this is a

cross-country analysis. This implies that manufacturing accounts for $194,000 for every $1

million increase in GDP in the cross-section.

The residuals from the regression and GDP are both ranked as shown in the table. So, GDP is the

only independent variable we have considered from the analysis, it is first ranked, ranked from 1

to 27 and then the corresponding residuals are also ranked. So, the first country having a rank

with respect to GDP as 1, in terms of residuals it has a rank of 2 and so on.

So, when these are ranked, then I calculate as the difference between rank 1, the rank of GDP𝐷
𝑖

minus rank of residuals. So, this is minus 1 here similarly 2 minus 4 is minus 2, 3 minus 8 is

minus 5 and so on, and then I consider , so minus 1 squared 1, minus 2 square 4 and so on.𝐷
𝑖
2



(Refer Slide Time: 17:24)

The sum of turns out to be 1608. Therefore, the rank correlation coefficient is calculated as𝐷
𝑖
2

(refer slide time: 17:32), this gives us a value of 0.56. So, the test statistic will be the rank

correlation coefficient 0.56 multiplied by (refer slide time: 17:54).

And hence the null hypothesis of homoscedasticity is rejected at the 1 percent level and when it

is rejected at the 1 percent level, it is obvious that it will be rejected also at the 5 percent level.

So, the null hypothesis is rejected here. Essentially if you remember, this is our distribution and

probably here I have 1 percent, so this is 0.05 percent. This is a two-tailed test. So, 0.005 percent,

and this corresponds to 2.58 minus here it is 2.58. And 2.91 lies here because of which it does

not fall into the acceptance region, it falls into the rejection region, we reject the null hypothesis.
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Now we talk about Goldfeld-Quandt Test. One of the simplest methods is this Goldfeld-Quandt

Test. The steps involved in the GQ test are first of all split the sample into two sub-samples of

length and , it is not necessarily that has to be equal to . So equal to is not𝑛
1

𝑛
2

𝑛
1

𝑛
2

𝑛
1

𝑛
2

necessary, we can have not equal to , we also can have equals to . The regression𝑛
1

𝑛
2

𝑛
1

𝑛
2

model is estimated on each sub-sample and the two residual variances are calculated as, andσ
1
2

.σ
2
2

So, you can see that (refer slide time: 19:32). The null hypothesis is that the variances of the

disturbances are equal, which can be written as, against a two-sided alternative. So,σ
1
2 =  σ

2
2

the null hypothesis talks about the two variances. If the two sub-samples have the same variance,

then it means there is no Heteroscedasticity, the variances are the same across all the

observations.

The test statistic is denoted by GQ following Goldfeld and Quandt is written as, , whereσ
1
2 /
^

σ
2
2̂

the larger of the two variances must be denoted by , or it should be in the numerator. Now, thisσ
1
2 

^



may correspond to any one of the samples. Of course, here one refers to the first sample, but the

point is that the larger variance must be in the numerator.



(Refer Slide Time: 20:38)

We can conduct an F-test to test for the significance of the test statistic and the null of constant

variance is rejected if the test statistic exceeds the critical value. The GQ test is simple to

construct, but its conclusion may be contingent upon a particular and probably arbitrary choice

of where to split the sample.

Suppose that it is thought that the variance of the disturbance is related to some observable

variable z which may or may not be one of the regressors. A better way to perform that test

would be to order the sample according to the values of z and then to split the reorder sample

into and observations. So, this just provides some guidelines about how to go for a split,𝑛
1

𝑛
2

but then there is no specific rule about how to split observations or the sample. So, that is one

problem with the GQ test.

Now, if we continue with the previous example, then we see that using the same data used for a

Spearman rank correlation coefficient. Let us take the first sample, we split the sample into two

sub-samples, and we actually leave some of these observations from the middle part. So, that is

also one solution to tackle Heteroscedasticity.

So, instead of 28 countries, let us take 11 plus 11, 22 countries, so we consider 11 countries with

the largest GDP and 11 countries with the smallest GDP. We could have worked also with 14



countries with the largest GDP and 14 countries with the smallest GDP. The RSS from the two

regressors is observed to be (refer slide time: 22:23).

Note that since = , we need not calculate the residual variance because residual variances𝑛
1

𝑛
2

are simply (refer slide time: 22:41), because in both cases we have and in the𝑛
1

− 𝑘 𝑛
2

− 𝑘

denominators and since they are the same value so they cancel out and we observe a GQ value of

86.1.

The critical values of the F-statistic or the corresponding F-statistic with the degrees of freedom

equal to 9 is 10.1 at a 1 percent significance level. Therefore, the null hypothesis of

homoscedasticity is here also rejected because the critical value or this value of the statistic

calculated is much higher than the critical value.

(Refer Slide Time: 23:28)

Now, we talk about the third test that is the Breusch-Pagan Test. Here we consider the model

(refer slide time: 23:34) which is our original model or model of the world. We assume that the

expected value of u given x is equal to 0. So, the mean value of the sample residuals is also

expected to be 0. Therefore, OLS is consistent and unbiased no problem.β
^



And we want to test whether (refer slide time: 24:05). This is our null hypothesis against an

alternative hypothesis that variance of u conditional upon x is not equal to sigma square. If is𝐻
0

false, then the expected value of conditional upon x can be any function of the a simple𝑢2 𝑥
𝑖
'𝑠

approach to assume a linear function.

So, we assume a linear function between and the values of x. The null hypothesis of𝑢2

homoscedasticity implies that all these coefficients are going to be 0. So, if all these coefficients

are equal to 0, then this implies that is not dependent on any of the independent variables at𝑢2

least linearly. Under the null, we assume that covariance x and v is equal to 0. Therefore, the null

hypothesis can be tested using an F-test.

In order to test the null hypothesis, we consider OLS estimates of u from equation-1 and run the

regression of equation-2. So, this is the first regression that we run, obtain the corresponding

values as (refer slide time 25:23).
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The null can be tested using an F-test with ( degrees of freedom, the LM version𝑘,  𝑛 − 𝑘 − 1)

of this test is called basically the Breusch-Pagan test or BP test for Heteroskedasticity. The steps

of BP tests are; first of all estimate equation one and collect . Second, run the regression in𝑢
^



equation-2 and keep the , which we called , this is because this is not the generated from𝑅2 𝑅
𝑢
^
2 𝑅2

equation-1. Rather it is generated from equation-2 where the independent variable is (refer slide

time: 26:07).

So, the sample observations or the number of observations in the sample multiplied by the 𝑅2

obtained from regression 2, and this follows a chi-square distribution with K degrees of freedom.

So, again, depending on the value of the statistic and the critical values given by the chi-square

test, we may reject or not reject the null hypothesis.

(Refer Slide Time: 26:43)

And the last test that we discussed is that of White’s. A further popular test is White’s test which

was given by White in 1980, which is a general test for Heteroscedasticity. The test is

particularly useful because it makes few assumptions about the likely form of Heteroscedasticity.

So, unlike the Breusch-Pagan test, it does not consider only a linear combination of the

independent variables, or as a function of the linear combination of the independent variables.𝑢
^2

It tests whether the variance of u is uncorrelated with all the independent variables, their squares,

and their cross products. Suppose k is equal to 3 that is, there are only 3 independent variables



then White’s test is based on estimation of on and then , , and then𝑥
1,

𝑥
2, 

𝑥
3

𝑢
^2

𝑥
1,

𝑥
2, 

𝑥
3

𝑥
1
2 𝑥

2
2 𝑥

3
2

cross multiplication of .𝑥
1
𝑥

2 
, 𝑥

2 
𝑥

3
, 𝑥

1, 
𝑥

3

We can also add terms like (refer slide time: 27:54). An F-test can also be performed in this

context.
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The weakness of White’s test is that the number of regressors and degrees of freedom multiplies

with an increase in the number of regressors. So, when we have ( ) regressors White’s test𝑘 + 1

will (refer slide time: 28:34). So that is a large number of restrictions. An alternative testing

procedure is to consider this is very similar to the Hausman specification test, endogeneity test,𝑦
^

that we discussed under omitted variable problem.

That we actually obtain (refer slide time: 28:55). And test for Heteroscedasticity by estimating

the equation while (refer slide time: 29:04- 29:20). And this can also be tested using an LM or

F-test statistic.
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So, these are the references that I have considered in order to come up with a discussion on the

definition of Heteroscedasticity and the detection of Heteroscedasticity. What kind of problems it

causes to the OLS estimates and in the next module, that is module 18, I am going to deal with

how to deal with Heteroscedasticity that is if there are heteroscedastic errors, then how we can

still get further minimum variance estimates of the OLS regressors. Thank you.


