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Hello, everyone. So, I continue with the problem of Heteroscedasticity in Module 18 of the

course on Econometric Modelling.
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In Module 17, we discussed the definition of Heteroscedasticity, what kind of problem it

leads to, and then how we can test for Heteroscedasticity. There I had discussed four



alternative tests for the presence of Heteroscedasticity and they were the Spearman rank
correlation coefficient test, we discussed Goldfeld- Quandt test, then we discussed the

Breusch-Pagan test, and finally, the White's test.

Now, I'm going to discuss how to deal with Heteroscedasticity. Now, dealing with
Heteroscedasticity has actually two different aspects. So, when we study as I have mentioned
in the previous module, there is something called autoregressive conditional heteroscedastic

CITors.

So in those situations that heteroscedasticity is actually modelled, or the heteroscedastic
errors are incorporated into the models instead of trying to remove the problem of
heteroscedasticity. But here currently, what we try to do is, primarily, while dealing with
heteroscedastic errors, we try to remove the problem of heteroscedasticity by removing the
problem of heteroscedasticity, what we obtain is, of course, the efficient estimators, but we
are not actually sure about whether they are unbiased or consistent or not. So, most often they
will not be unbiased estimators, but they are certainly the best estimators that are the most

efficient estimators.
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S
Dealing with Heteroskedasticity
« If the form of the heteroscedasticity is known, then an alternative
estimation method which takes this into account can be used. One such
possibilityis called the generalised least squares (GLS) method.

+ GLS can be viewed as OLS applied to transformed data that satisfy the

OLS assumptions. o XZ‘Xg
« Suppose the true relationshipis [~ y; = fo + f1X;+1u; ) where X
contains all the independent variables for observation 7.

« Let the standard deviation of the disturbance term in observation i be

+ If we know g,; for each observation, we can eliminate the
heteroscedasticity by dividing each observation by its value of o.
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So if the form of heteroscedasticity is known, which is actually our trouble many times, then
an alternative estimation method that takes this into account can be used. One such possibility

is called the generalized least square or GLS method.



GLS can be viewed as an ordinary least square technique or method applied to transform data
that satisfy the OLS assumptions. So, whenever we transform or modify the data, so that the
data fulfills the basic assumptions of OLS or CLRM assumptions or Gauss Markov theory

assumptions, then that is called GLS or generalized least square.

Suppose, the true relationship is given by this where this x contains all the independent
variables for observation i. So, this is for a single observation. So, if you remember our x was
an n by k matrix where there were n observations. So going by that this x actually will have

only one observation and of course, k independent variables.
So, (refer slide time 3:30- 4:06).
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« Therefore, every observation will have a disturbance term drawn from a
distribution with population variance 1, and the model will be homoscedastic.

* Note that.there is no constant term as corresponding to f3y, there is a new

1 —
vanable@or the ™ observation. A
ut
+ However,we obtain efficient estimates of /3, and f8; with unbiased standard
errors. o
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If we know (refer slide time: 4:07- 4:38).
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Dealing with Heteroskedasticity
« If the form of the heteroscedasticity is known, then an alternative
estimation method which takes this into account can be used. One such
possibilityis called the generalised least squares (GLS) method.

+ GLS can be viewed as OLS applied to transformed data that satisfy the

OLS assumptions. H_ o Xnvk
« Suppose the true relationshipis [ y; = o + f1Xi +u; ) where X
contains all the independent variables for observation 7.

« Let the standard deviation of the disturbance term in observation i be

+ If we know g,; for each observation, we can eliminate the
heteroscedasticity by dividing each observation by its value of o.
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So (refer slide time 4:38- 5:53).

Therefore, every observation will have a disturbance term drawn from a distribution with
population variance 1 and the model will be homoscedastic. Note that, there is no constant

term as corresponding to (refer slide time: 6:10).
So, so far for all the observations, we had one constant term that was 1, and corresponding to
that constant term our parameter was BO and the estimated parameter was BO, but now what I

am having is (refer slide time: 6:30).
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Weighted least square (WLS) estimation
The GLS estimators for correcting heteroskedasticity are called weighted

—_—

least squares (WLS) estimators. _ -
+ Under WLS the form of heteroscedasticity is specified and WLS method
is applied. If the for _7specified is correct then WLS is more efficient than

OLS.
L
+ Suppose, %qrjuth c where h (X) is some function of X,
Since Var (u/X) is always pve,@'must hold. ,ﬂxmf "
™ 2

+ Suppose the function h (X) is known, such that §

af = Var(uX;) =_02ﬁ"(X,-) =ah;
— A ———
+ For example, if ; u,-andTVar(u,-\inc,)= ozincf then
h (X)=X:i.e. the error variance is oronortional to the level of income.
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Now, o is an observation-specific variable and as a result of which, we do not have any
constant term. However, we obtain efficient estimates of BO and B1 with unbiased standard

errors, because you can see that since we are now having a homoscedastic variance, our
estimates are now efficient, and the standard errors are actually unbiased estimators of the

population standard deviation.

The GLS estimators for correcting heteroscedasticity are called weighted least square
estimators. So GLS can be applied in various situations or in various circumstances. Now,
when we use them for correcting heteroscedasticity then they are specifically called weighted
least square estimators. So, GLS or WLS is actually one kind of GLS. Under WLS, the form
of heteroscedasticity is specified and the WLS method is applied if the form specified is
correct, then WLS is more efficient than OLS.

Of course, specifying the form correctly is actually not an easy thing. But if we can specify
the form, then as I have just explained, that WLS becomes more efficient. So, the previous
example also is an example of WLS only, but in a more generalized context. Now, we are
becoming more specific by bringing in the definition of WLS. Suppose, (refer slide time:

8:19).
So instead of writing c oro ., I am now specifying the functional form. And in that

. L. 2 .
functional form, we have a constant component which is ¢, and a component that is



dependent on the independent variables, which is given by x. Now, again, I am still not

specifying the functional form of the independent variables. It is just that the 0'1,2 or O'ii, has

. 2 .
been segregated by taking out a constant component denoted by ¢ and leaving the rest as

dependent on the independent variable.

Now, since the variance of u/X is always positive, h(X) > 0 must hold because if h(X) is not
greater than 0, it is a negative number, then the variance of u/X will also be a negative
number. But that is not possible because variances are always calculated on the basis of the
squared sum. So, squared sum of the deviations of the individual values from its mean and as

a result of which they can never be negative numbers.

Suppose the function (refer slide time: 9:40). For example, this is my equation where we are
considering savings as the dependent variable and it is regressed on income. So, we are trying

to find out whether savings are impacted by the incomes of individuals or not.

So this is an individual specific observation where we are saying that we are trying to find out
whether the income of an individual iimpacts his or her savings or not and suppose (refer

slide time: 10:25). That is the error variance is proportional to the level of income. As income

. . . . 2 .
increases, the error variance also increases proportionately because o here is a constant term.
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Weighted least square (WLS) estimation

Steps to obtain WLS estimates:
1. The original equation y; = By + i+ -+ + BXy +u; is-divided by
\./h:,-(orwfincf)for the above exarp leto \et B 6™ A
Lo Loy gy g g BB ) o 3) Chelch,

Because if Var (UJXJ.) =g h, then Var (u_pi |xi) = g2 =

T
2. If all Gauss-Markov assumptions are fulfilled except for the one of
homoscedasticity by the original model, then equation 3) satisfies all
Gauss-Markov assumptions. Therefore, estimating equation 3) using OLS
gives us BLUE.
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Now, we discussed the steps to obtain WLS estimate. The original equation is again given by

this, now it is divided by - /hi. So, I stick to my previous example, if the form of variance is
given as o hi, then this is variance as a result of which my standard deviation or standard
deviation of the population error will be o, /hi. Now, since o is constant, we are ideally

dividing this equation by only r\/ﬁi . So, if [ divide it by \/ﬁl then what happens?

We have this expression. So, (refer slide time: 11:57).

So, if all Gauss Markov assumptions are fulfilled, except for the one of homoscedasticity by
the original model, then equation three satisfies all Gauss Markov assumptions because our
only problem was that our errors were not homoscedastic. Errors were heteroscedastic. But if
I write equation three, if I write it in this form, knowing the form of heteroscedasticity then

you can see that the variance of this term, (refer slide time: 12:55).

So, these are actually homoscedastic errors. So if homoscedastic errors are there and other
assumptions of Gauss Markov theorems have already been fulfilled, then we can estimate
equation 3 using OLS and then OLS would give us the best linear unbiased estimators. So we
have the most efficient estimators, the best estimators along with the fact that the estimators

will also be unbiased.

But one thing we need to notice here, and that is the variables are not now, X X, and so on.

Instead, what are the variables? (Refer slide time: 13:48).
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+ Letus rewrite equation(3)as y; = f5, Brxiy + o+ Bxi g 7 ﬁ,@)
+ However, these estimators will be different from OLS estimators and let us
denote them by Sy, By ..., B — these are GLS estimators. The GLS estimators
for correcting heteroscedasticity is called WLS estimators. They are called WLS

because f5; minimizes the weigt ted sum of squared residuals where each
squared residual is weighted b %

« Algebraically, ﬁj minimizes Z?:ﬁ’i =By = Bixiy = = Bexi)*/

+ The fact that each observation is divided by its square root of its population
error variance implies that observations with smaller variances receive greater
weights. Alternatively, the idea is to give less weight to observations with high
error variances.
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So, we rewrite equation-3 as (refer slide time: 14:08). However, these estimators will be
different from OLS estimators, because as you can see that our variables have changed. So, if
our variables have changed, then of course, the estimated parameters would also change and
let us denote these estimated parameters or other parameters as (refer slide time: 14:43) and

they are the GLS estimators. They could be different from OLS estimators.

The GLS estimators for correcting heteroscedasticity is called WLS estimators. They are

called WLS because B: minimizes the weighted sum of squared residuals, where each
squared residual is weighted by hL So if you remember earlier when we talked about OLS Bj
was designed to minimize the sum of square residuals and we did not use any weights there.

But here in case, in this context, what we are minimizing? We are minimizing (refer slide

time: 15:34- 16:08).
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Weighted least square (WLS) estimation

Steps to obtain WLS estimates:

N . _ ﬂ )= 2 ’@
Because l_fVar{u,lx,-)-olh,, then Var(\jh_ilxl) 0

2. If all Gauss-Markov assumptions are fulfilled except for the one of
homoscedasticity by the original model, then equation 3) satisfies all
Gauss-Markov assumptions. Therefore, estimating equation 3) using OLS
gives us BLUE.
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denote them by fiy, fy ..., B — these are GLS estimators. The GLS estimators
for carrecting heteroscedasticity is called WLS estimators. They are called WLS

because f8; minimizes the weig
squared residual is weighted b

[
+ Algebraically, §; minimizes LI, (y; = By =y = = kaikw@
+ The fact that each observation is divided by its square root of its poputation

error variance implies that observations with smaller variances receive greater

weights. Alternatively, the idea is to give less weight to observations with high
error variances.

ted sum of squared residuals where each
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So algebraically (refer slide time: 16:10). So I write the original model and then the entire
thing divided by hi because for each and every variable it is divided by hl,, and when I go

for squaring the entire expression, then basically this is hi in the denominator. So that's why
we have hl_.
The fact that each observation is divided by the square root of its population error variance

implies that observations with smaller variances receive greater weights. Alternatively, the

idea is to give less weight to observations with high error variance. So, observations that are



the combination of y and X, suppose there are only two variables one y and one x, one

dependent variable and other independent variables.

Now, if we observe very high variance between y and x specific to a particular observation,
then we would consider the quality of that observation to be poor compared to observations
having lower variances because lower variances implies that they are more close to the mean
of the series and the mean of the series is expected to represent the population expected value
or population mean as a result of which we can say that the quality of those observations

having lower variances is actually higher or better.

Now, in this scheme of things that is in weighted least square technique, what we are doing is
that, giving lower weights to the observations having higher dispersion or higher variances

because what we are doing is that, taking aside the constant term, we are dividing each and

. 1 1
every observation by — or —.

T

Now, the thing is that since hi is a part of the error variance, the larger the error variance, the

larger the denominator, and the smaller is the weight. Alternatively, the smaller is the error

variance corresponding to a particular observation, the smaller is hi and larger are the weights
associated with that observation.
So that is how we are actually going for an estimation where observations having higher

variances are actually penalised by assigning lower weights to them and better quality

observations having lower dispersions or deviations from their mean value are given higher

weight in terms of —

NG
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Feasible GLS (FGLS)
+ However, most often the form of heteroscedasticity is not known.
Nevert éQS we may odel the function h(X) and use the data to

estimatg h, denoted a Use of h in the GLS transformation is known
as FGLS! E— D)

« Suppose, (Var(ulx) :(a ixp(do + 0301 + 05 + - @ 4
\h(‘ﬁi) = exp(c?ﬂ +ox + x4 4 5kxk)>o
« A non-linear functional form is easy to use when correcting for
heteroscedasticity and it must ensure that h(x) > 0. Equation 4) can be
rewritten as
u =azexp(60+61x1+52x2+---+6kxk@ where v is
the error term
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Then, we talk about something called feasible GLS. So this actually is applicable when you
do not know the form of heteroscedasticity. So most often the form of heteroscedasticity is

not known. Nevertheless, we may model the function hX . and use the data to estimate hi

denoted as fti. Use of ﬁi. hat in the GLS transformation is known as FGLS or Feasible GLS.

So, what exactly we are trying to do here is that we are trying to hypothesize the functional
form of the relationship between the independent variable and the error variance. So, the

relationship between independent variables and the error variance is given by hX , or hi. And

on that basis of that hypothesized relationship, we try to find out whether such relationship
actually exists or not, and if we observe that relationship actually exists then we incorporate
that relationship. So, feasible GLS actually goes one step further and first tries to estimate the

relationship between the error variance and the independent variables.
So, suppose the (refer slide time: 20:30- 21:00).

This is the same condition which we required earlier also because error variances have to be 0

and as a result of which h(X) has to be greater than 0 provided o is always greater than 0.

Equation 4 can be written as (refer slide time: 21:16).

What is done is that instead of having this variance of u given x, we are considering u

because that variance of u given x is actually the expected value of u’. And then by taking

out of the expectation operation, we are introducing a random error term here, which is v.



Now, once it is done, it takes an estimable form and it can also be converted into a linear

functional form which could be estimated using the OLS method.
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/(!D:ea ible GLS (FGLS)
]n(Uz) 1X1+62X2+"'+é?kxlk ln(ﬂ) @
a0+ Bixy 46,0+ F Oexfre 4 i

&MW“

: Or In(u’) =

. or n(u?) =

+ Wheree=In(v], F{e]=0and cov (g, x) =0

« The intercept & ;50_{1[1(02)_

+ Butifall Gauss-Mm are fulfilled, then OLS estimates of
equation 5) will return unbiased estimates of §,j=1,2, ... k.

+ But u?is not observable.

+ Therefore, we run the regression of In(@%) on x,, X,, ..., X, where il is

obtained from the regression of y on'xy, x,, ..., X;. N

)
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So we write by taking natural logarithm. On both sides, we write it (refer slide time: 22:06-

23:05).

These are required as part of our classical linear regression model assumptions, CLRM
assumptions. But, if all Gauss Markov assumptions are fulfilled, then OLS estimates of

Equation 5 will return unbiased estimates of (refer slide time: 23:26).
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Feasible GLS (FGLS)

: Then the fitted value is obtained as § = & + §;x; + 0,0, + -+
Bt -

+ Hence h = exp(§)

+ Estimate the equation  y; = fox;, + Prxiy + -+ Bexi + u;

using OLS where the starred variables are weighted by 1/ Jﬁi

Since FGLS obtains h; from the same data, it is BLUE. The estimators
are biased but consistent and more efficient than OLS estimators.
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Feasible GLS (FGLS)

+ However, most often the form of heteroscedasticity is not known.

Nevertheless, we may model the function h(X) and use the data to
estimatg h;/denoted a Use of h; in the GLS transformation is known

as FOLS.C ()

+ Suppose, |Var(ulx) ; azixp(cin +61x1 4 8,20 + @ 4

= h(x) = exp(dg + 012 + 8% + 4 6ux) 50
« A non-linear functional form is easy to use when correcting for
heteroscedasticity and it must ensure that h(x) > 0. Equation 4) can be
rewritten as
u? = alexp(8y + 6,x, + 81, + ---+6kxk@ where v is
the error term

@ e O mm o
So first of all, we go back to the original model, run a regression of y on X, X, tox, collect
the residuals that are u then run a regression of u on X, X, to xkk. (Refer slide time: 24:05).

Now, you can see that my original equation (refer slide time: 24:22- 25:07)

(Refer Slide Time: 25:21)



Feasible GLS (FGLS)

2
¢ Then the fitted value is obtaineda @y +61x1 +8,0, 4+

_5&{"_‘\ - ﬂ/%w /a
+ Hencelh/=|exp(§)/ ya /4;2

+ Estimate the equation  y; = Byxi, + B},

Since FGLS obtains h from the same data it is BLUE. The estlmators
are biased but consistent and more efficient-tha
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So, there are slight differences, but broadly I can consider it to be (refer slide time: 25:15-

26:02).

In the case of feasible GLS, what has been done, which is different from WLS is that we do
not know the functional form or rather we have hypothesized a functional form of the error
variance with respect to the independent variables, and then we have tried to come up with an
estimate of the hypothesized relationship. The estimate of the hypothesized relationship is

given by (refer slide time: 26:27).

Now, you can see that, if the error variance is not dependent on the independent variable,

which alternatively means that there is no heteroscedasticity then & = 0 kwill be equals to 0.

So, in case we have a null hypothesis, which says (refer slide time: 27:05), this null

hypothesis will not be rejected.

And if this is not rejected, then this means this functional specification that actually has two
alternative implications. First of all, this kind of a linear functional specification or this kind

of nonlinear functional specification is actually not valid. So, this relationship does not exist.

Alternatively, it can also mean that the error variance is actually non-heteroscedastic. So, it is
homoscedastic and in that case of course, we do not need to apply or go for a WLS. But if all

or some of the 81 Sk turns out to be nonzero statistically then we can go for this kind of an



FGLS or feasible GLS where we divide the original variables by hAl,, the estimated a

hypothesized functional form and then obtain the values of BO, B .0

1 k

Again, this 8 . B .. Sk are not equivalent to the OLS estimators or OLS estimates because
1

you would see that again our variables are not what we have observed in case of OLS or what
we would have used in case of OLS. The variables have changed, which has already been

discussed.

So, since FGLS obtains hi from the same data, it is actually BLUE. The estimators are biased

but consistent and more efficient than the OLS estimators. So, we call it biased. The reason is
whatever we estimate, suppose the estimated values are denoted by or estimated parameters

are denoted by (refer slide time: 28:58).

And that is why the estimators are biased, but we can easily prove that they still are consistent
which is a large sample property, and they are more efficient. So, consistency is there the long

we assume that the covariance between x and u or the covariance between these variables and
U is equal to 0. The estimators are consistent and they are more efficient than the OLS

estimators.
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So that brings me to the end of the discussion on heteroscedasticity. We have discussed
different perspectives, that is its definitions, detections as well as how to deal with or how to

correct for heteroscedasticity. These are the references. Thank you.



