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This is Module 21. We are now discussing statistical inferences. So under this, we have

discussed so far, t-test and Wald test. Next, I am going to deal with F-test which is one of

the most commonly used tests.



(Refer Slide Time: 00:50)

In this module, first I will discuss the basic theories related to F distribution, and then in

the next module, we will be presenting some examples and applications of F-test.
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So F distribution is an important distribution for statistics and econometrics. In particular,

the F distribution is used for testing hypothesis in the context of multiple regression

analysis. This is primarily because we actually test multiple hypothesis simultaneously.



To define an F random variable, let X1 follow the chi-square distribution with k1 degrees

of freedom, and X2 follows a chi-square distribution with k2 degrees of freedom, and X1

and X2 are independent. Then, the random variable, which would be obtained as a ratio of

X1 divided by its degrees of freedom, X2 divided by its degrees of freedom will follow an

F distribution with k1 and k2 degrees of freedom.

The integer k1 is called the numerator degrees of freedom because it is actually associated

with the numerator.
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And similarly, integer k2 is called the denominator degrees of freedom because it is

associated with the chi-square variable in the denominator. The pdf of the F distribution

with different degrees of freedom is shown in the figure above where you can see that

unlike the t and normal distribution, the F distribution actually does not have a nice

bell-shaped curved. Rather, it is a skewed distribution and the skewness is actually more,

it almost takes the shape of a j distribution with the decline in the numerator degrees of

freedom.



(Refer Slide Time: 02:50)

The t-test was used to test the single hypothesis, that is, hypothesis involving only one

coefficient. But what if we want to test more than one coefficient simultaneously? For

example, suppose a researcher wanted to determine whether a restriction that the

coefficient values for beta 2 and beta 3 are both unity. That is, my null hypothesis is beta

2 equals beta 3 equals 1, so that an increase in either one of the two variables, that is X2

or X3 would cause Y to rise by 1 unit.

The framework of the t-test is not sufficiently general to cope with this sort of hypothesis

test. Instead, a more general framework is employed, centering on an F-test.
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Now, suppose we wish to test multiple hypothesis about the underlying parameters beta

naught to beta k. So, this is a general specification where we have k variables.

Alternatively, we want to test that a group of variables have no effect on the independent

variable simultaneously. So, we are basically examining the impact of a group of

variables, simultaneously on the dependent variable.

So, we take an example. Suppose our model is the logarithm of salary is equal to beta 0,

the parameter associated with the constant term, beta 1; age, beta 2; education, beta 3;

experience J, beta 4; experience T and beta 5; loc plus u, where experience J measures

years spent on the current job, experience T measures the total number of years of

experience and loc presents the location.

Now, suppose our null hypothesis is beta 3 equals beta 4 equals beta 5 equals 0. So, we

are going to test whether the null hypothesis states that these three variables do not

impact the dependent variable which is the logarithm of salary.
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The null constitutes three exclusion restrictions. So, these are called exclusion restrictions

because through these restrictions, we are excluding some variables. That is, if the null is

true, then expJ, expT and loc will have no effect on log salary after age and education

have been controlled for, and therefore should be excluded from the regression. This is an

example of a set of multiple restrictions. We are having multiple restrictions, restrictions

on three parameters, simultaneously.

A test of multiple restrictions is called a multiple hypothesis test or a joint hypothesis test.

Further, the appropriate alternative is simple HA:H0 is not true. HA holds if at least one of

beta 3, beta 4 or beta 5 is different from zero.

So in that joint hypothesis, test of joint significance of beta 3, beta 4 and beta 5, even if

any one of them is different from 0, then we will actually not reject the alternative

hypothesis. That is, the alternative hypothesis becomes true.
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A particular t statistic tests a hypothesis that puts no restrictions on the other parameters.

So, when we say that t statistic or t-test is used for only one hypothesis, then that implies

that there are no restrictions on other parameters.

In order to test the significance of multiple restrictions jointly, we can re-estimate the

model mentioned in equation 1 without the variables whose parameters are considered in

the restrictions.



So what is my restriction, or what are my restrictions? My restrictions are: what is stated

in the null hypothesis, that is, beta 3 equals beta 4 equals beta 5 equals 0.

Now, when we incorporate the null hypothesis or the restrictions under the null

hypothesis in the original model, then that becomes our restricted model. So, if these are

incorporated, then you can see that equation 1 will not have beta 3; 0, beta 4; 0, beta 5; 0.

So these three variables will be dropped from the equation.

And what I am left with is simply log salary equals beta 0 plus beta 1 age plus beta 2

education plus the error term. Since, RSS, that is, residual sum of square always increases

when variables are dropped from or they decrease when variables are added to a model,

this algebraic will be utilized here.

So, therefore, if the three variables are dropped, we would expect the residual sum of the

square to increase for equation 2.

If you remember, we had discussed that R square, the concept of adjusted R square was

introduced because the problem with R square is that R square always tends to increase

the moment we increase the number of independent variables regardless of whether they

are statistically significantly contributing to the explanation of the dependent variable.

So, unless and until the coefficient value is exactly equal to 0, R square would always

increase whenever we increase the number of the independent variables. And since R

square is defined as the explained sum of squares divided by the total sum of the square,

alternatively 1 minus the residual sum of a square divided by the total sum of the square.

So this is something important, which implies that RSS actually decreases whenever

there are variables that are dropped from an equation.
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Our concern is to check whether this drop is large enough or statistically significant to

warrant rejecting the null hypothesis. So equation 2 is called the restricted model. While

equation 1 is called the unrestricted model, the original model is the unrestricted model,

where we do not include any restrictions.

Now we generalize this to a k variable model, suppose the model is, the k variable model,

the way we write it, y equals beta 0 plus beta1X1 plus beta k X k plus u. The number of

parameters in the unrestricted model is of course k plus 1, that is, these k parameters plus

one are associated with the constant term.

Suppose, we have q exclusion restrictions to test where the null hypothesis states that q of

the variables have 0 coefficients.
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For notational simplicity, assume that it is the last q variables in the list of independent

variables whose parameters are included in the restriction. Therefore, our null hypothesis

is, beta k minus q plus 1 equals beta k minus q plus 2, and so on up to beta k and all of

them are equal to 0 is my null hypothesis.

The restricted model is y equals beta 0 plus beta 1 X 1 up to beta k minus q X k minus q

plus u. So, the restricted model does not include these parameters. As suggested earlier

that the testing procedure compares the RSS, that is the residual sum of squares from the

2 regressions.

It gives the F statistic as, or the F ratio defined as RSS from the restricted regression

minus RSS from the unrestricted regression divided by q, that is the numerator degrees of

freedom, the number of restrictions divided by RSS, the unrestricted regression that is,

RSS from the unrestricted regression divided by n minus k minus 1 degree of freedom

associated with the denominator.

And it follows a q square distribution with k degrees of freedom and n minus k minus 1

degree of freedom.
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Note that F-statistic is non-negative because RSSr is always greater than RSSu. We have

just discussed that when we drop variables from an equation, or from a model, then the

way R square falls down, R square which is 1 minus RSS, so RSS is supposed to go up.

The residual sum of the square goes up.

And as a result of which we would always have RSSr greater than RSSu, that is RSS

obtained from the restricted regression greater than RSS obtained from the unrestricted

regression.



Further q equals the numerator degrees of freedom, which is again, the degrees of

freedom associated with restricted regression minus the degrees of freedom associated

with the unrestricted regression.

And finally, n minus k minus 1, which is the denominator degrees of freedom, that is

equal to the degrees of freedom associated with the unrestricted regression. Also, the

denominator is the unbiased estimator of sigma square equals to the variance of u.

What is the denominator? The denominator is RSSu, which is the residual sum of the

square from the unrestricted regression divided by minus, n minus k minus 1. So this is

actually the unbiased estimator of the population error variance.

Now, if we consider the first example of the equation of logarithm of salary, suppose we

have the following information from the regression estimates. That is, we have a total

number of observations which is equal to 353, RSSu is obtained as 183.186, RSSr is

obtained as 198.311, therefore, the degrees of freedom would be obtained as n minus k

minus 1, which is 347.

We know that there are three restrictions. So, q is equal to 3. And we calculate the F-ratio

as 9.55.
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The F-ratio will be compared with the tabulated critical values of the F distribution. And

if the statistic is sufficiently large, the null hypothesis will be rejected.

At 5 percent and 1 percent levels of significance, the F critical values with 3 and 347

degrees of freedom are 2.60 and 3.78, respectively. Therefore, the null hypothesis that

experience J, experience T, and location do not affect salary is rejected.

Next, we show how we derive the F-test from the Wald test as a ratio of two independent

chi-square random variables divided by their respective degrees of freedom. So, where

we are getting this relationship, that F is defined like this is now explained.
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In Module 20, we noted that the Wald statistic is this. This is something we derived. That

Wald statistic follows the chi-square distribution with j degrees of freedom. Wald test

assumes that the sample is very large. We mentioned that it is a large sample or

asymptotic test so that the test statistic is distributed as chi-square j.

F-test is an exact test, where we have to replace the sigma square. The sigma square

which is embedded here, the variance of beta hat contains sigma square. That sigma

square will be replaced with a sigma hat square because F-test is an exact test, test, it is

not an asymptotic test. So, we work with samples. The sample need not be a very large

sample.

So, as a result of which, the sample residual variance replaces the population error

variation. So, sigma hat square becomes a summation, which is actually equal to

summation ui hat square divided by n minus k or summation u hat prime u hat divided by

n minus k. They are the same thing. This is written by summing individual residuals over

ith observations.

And this is, we write, u hat prime u hat, we write when we are actually using the matrix

or vector notation. Now, given that variance of beta hat equals sigma square into X prime

X inverse, this expression, that is, R variance of beta hat R prime, actually, and the entire



thing inverse becomes R X prime X inverse R prime whole inverse divided by sigma

square.

This is because here variance of beta hat will be replaced with sigma square X prime X

inverse. Now, sigma square being a constant would actually come out. And since it will

also have a, raised to the power minus 1, it will go to the denominator. And X prime X

inverse remains here.

So, that Wald statistic can be now written as R beta hat minus q prime, R X prime X

inverse R prime whole inverse. So, this is actually the part. Sigma square comes down, R

beta hat minus q, which follows a chi-square distribution with j degrees of freedom.
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We know that ui divided by sigma follows a standard normal distribution. Then,

summation ui square divided by sigma square follows a chi-square distribution with n

degrees of freedom.

This is what we discussed while introducing the t-test. That, if a variable has a chi-square

distribution with one degree, if a variable has a standard normal distribution, then

squaring it, we get chi-square distribution with one degree of freedom and by summing it

up, summing up the squares over n observations, we actually get chi-square distribution

with n degrees of freedom. So, exactly that thing is written here.



Now, replacing ui square with ui hat square, that is, the sample estimate of the population

error and dividing both, the numerator and the denominator by n minus k, what we get?

We are dividing it by n minus k and also dividing the denominator by n minus k.

Now, this is sigma hat square. And this, n minus k goes up. So this is what we obtain.

And this follows a chi-square distribution with n minus k degrees of freedom. This is

something I actually used while discussing the t-test, but did not prove it there. Now, I

will be proving that why this expression follows a chi-square distribution with n minus k

degrees of freedom.

So, we know that u hat is equal to MXy. If you remember, MX was defined as a

projection matrix. Why? MX equals to I minus X into X prime X inverse X prime. And

this projection matrix was orthogonal to the column space of X, which implies that this

MXy, MX multiplied by X would actually give us 0.

Now, we know that y equals X beta plus u. By plugging the expressions, we obtain MX X

beta plus MXu. We know that MXX equals 0, as this projection matrix is orthogonal to

the column space of X. So, MX multiplied by X becomes 0, which was also proved

earlier.

So we are left with only MXu. Now, this is an important expression. That is, u hat equals

to MXu, which is going to be used very soon.
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Also, since sigma hat square equals u prime, u hat prime u hat divided by n minus k, and

it is an unbiased estimator of sigma square, we can write by just changing sides. So, u hat

u prime becomes sigma square multiplied by n minus k.

Therefore, n minus k sigma hat square divided by sigma square can be written as u hat

prime u hat divided by sigma square. We just derived that u hat is MXu. So, u hat prime

will be MXu prime, which is equal to u prime MX prime. And then u hat will be Mxu

(refer to slide time 19:12).



We proved earlier that MX is a symmetric matrix. So, MX prime equals MX and this is

also an idempotent matrix. So, MX into MX is actually equal to MX. So, these two terms

actually become equivalent to MX and that is how we have u prime MXu divided by

sigma square.

Now, I am just writing it in this fashion, that u prime divided by sigma, MX multiplied by

u prime sigma. This type of expression is called an idempotent quadratic form because x

prime Ax is of the idempotent quadratic form if A is idempotent and x prime Ax follows

a chi-square distribution with the rank of A equals to the degrees of freedom.

So, u by sigma prime MXu by sigma prime would also follow a chi-square distribution

with the rank of MX as the degrees of freedom. Now, the rank of MX is n minus k. This

was derived in Module 2, where we derived that trace of MX is n minus k. So, therefore n

minus k sigma hat square divided by sigma square, this expression becomes u prime, u by

sigma prime.

So this expression MXu sigma follows a chi-square distribution with n minus k degrees

of freedom.
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Therefore, our F-statistic, which is basically a ratio of two chi-square distribution divided

by, with their respective degrees of freedom, we have in the numerator, the Wald statistic



divided by its degrees of freedom which is J, and in the denominator, we have this

expression which is again a chi-square distribution and divided by its degrees of freedom

n minus k (refer to slide time 21:33).

And this would follow an F distribution with J, and n minus k degrees of freedom. So,

this thing is written here. Now, by rearranging terms in expression 3, this can be written

as, or rewritten as, you can see sigma square and sigma square cancels out because this

sigma square is under 1 inverse. They cancel out, n minus k n minus k cancels out.

And the sigma hat square, being in the denominator, goes up into the inverse operator. So,

what we have is sigma R b hat, R beta hat minus q prime, the term as it is. Sigma hat

square, moving up, RX prime X inverse R prime whole inverse multiplied by R beta hat

minus q, the term as it is. And this J comes down.

This follows an F distribution with J and n minus k degrees of freedom. And this formula

is exactly equal to the formula, which we have earlier used while considering the

restricted and the unrestricted regressions.

Now, before we prove that these two are exactly equal, we would actually talk about

implications. But before that, I will just let you know that what we are using here is that,

a term u hat r, which is basically residuals obtained from the restricted regression, u hat u,

which is, or uu hat, which is the residuals obtained from the unrestricted regression.

These terminologies would be used. And as you can understand that they are basically the

same thing.

RSSr is the residual sum of squares. Residual sum of the square is obtained as, from the

restricted regression is obtained as ur hat prime multiplied by ur hat.
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So, talking about the implications, the restrictions are, first of all, H0 equals R beta minus

q equals 0. Another restriction beta hat is calculated as beta r hat which minimizes u

prime u equals y minus x beta hat prime multiplied by 1 minus x beta hat. This is the

usual format and it is a subject, this is subjected to R beta hat minus q equals to 0, which

is basically the null hypothesis (refer to slide time 23:58).

If beta hat r is far from the unrestricted beta hat, suppose we call the unrestricted beta hat

as beta hat u, then the restrictions are binding. Corresponding to beta r hat, there exists Ur



hat which is equal to y minus x beta r hat. Similarly, for beta u hat, there exists uu hat

which is equal to y minus x beta u hat.

Since beta r hat minimizes the sum of squares subject to restrictions, we have uu hat

prime multiplied by uu hat is less than ur hat prime multiplied by ur hat. Ideally, what it

again says, the same thing that RSS from restricted regression will be greater than the

RSS from the unrestricted regression.

So if Ur hat prime multiplied by Ur hat minus uu hat prime multiplied by uu hat is very

large, then the restrictions are not valid. If this is very large, then you can see that the

numerator of the F statistic will be large, which implies that given this value, the F

statistic will be large and it will become difficult for us not to reject that null hypothesis.

So most often, we would reject the null hypothesis, but the restrictions are not binding.
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We reject the null hypothesis which implies rejecting the restrictions as R minus q is

equal to 0, R minus beta q is equal to 0. Alternatively, if the constraints are not binding,

then these two regressions return the same value of residuals, that is ur hat equals to uu

hat, or ur hat minus uu hat equals 0, hence the numerator is 0. We accept the null

hypothesis. (refer to slide time 25:58)



Now, we will prove that this expression is exactly equal to this expression. So, our

problem is that we are minimizing y minus X beta r hat prime multiplied by 1 minus X

beta r hat by choosing beta r hat subject to these restrictions.
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Now, since this is a restricted optimization or minimization problem, we would set the

Lagrange as this where lambda hat is basically a constant term. Here it is actually a

vector of constant terms. So this is a vector J by 1 constant terms (refer to slide time

26:53)

Now, I expand the Lagrange by multiplying these two. So, I have y prime y, then y prime

X beta r hat. Similarly, we have beta r hat prime X prime y. And then we have beta r hat

prime X prime X beta r hat. So, and then we have the usual thing, plus 2 lambda prime R

beta r hat minus q.

You can see that this is actually a 1 by 1, this is of 1 by 1 dimension, which implies that

this is a scalar. Another one is also of 1 by 1 dimension so it is a scalar, as a result of

which we can write it like this.

Differentiating the Lagrange with respect to beta r hat, now we are going for

minimization. And setting it equal to 0, we get this actually equals to 0, when L is



differentiated with respect to beta r hat. So, we have minus 2X prime y plus, from here,

we have plus 2X prime X beta r hat. And then we have, again, plus 2R prime lambda.

The reason is that this is actually lambda prime R beta hat r. This is also of 1 by 1

dimension. That it is a scalar. So by taking its transpose, we can write it as beta r hat

prime R prime lambda. So that is how we are having here beta hat R prime, R prime

lambda. And by differentiating it with respect to beta r hat prime, we have R prime

lambda left with us.
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So, multiplying both sides by X prime X inverse, minus one, so we are multiplying by X

prime X inverse. So, we are having X prime X inverse X prime y, 2 2 cancels out. So we

are having minus X prime X inverse X prime y, then plus X prime X inverse, X beta X

prime X beta r hat. So X prime X inverse and X prime X cancels out. I am left with only

a beta r hat.

And then, we have X prime X inverse R prime lambda. So X prime X inverse R prime

lambda. If beta hat equals X prime X inverse X prime y, so this is my usual expression.

Whenever we go for multiple regression, then my, our beta is X prime X inverse X prime

y. So, we are calling this X prime X inverse X prime y is equal to the beta hat. And if the

beta hat is denoted by beta u hat in order to differentiate it from the restricted parameter

estimates (refer to slide time 28:47).

So, we write it, minus beta u hat plus beta r hat, and the same thing, which implies that

beta r hat minus, beta r hat is equal to beta u hat minus X prime X inverse R prime

lambda. So, this is equation 5, which I am going to use later.

Now, when lambda is equal to 0, this implies that beta r hat is equal to beta u hat. The

constraints are not binding at all. Now, multiplying both sides of 5, by R and subtracting

q from both sides, what do we obtain? We obtain R beta hat minus q on the left-hand

side. Then R beta hat u minus q on the right-hand side.

And then again, I multiply this expression by R. So R X prime X inverse R prime

lambda. Since this equals 0 under the null hypothesis, so we are having 0 equals to this

expression.
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This tells us that lambda is equal to R X prime X inverse R prime whole inverse R beta

hat u minus q. Therefore, from the equation, we can write that, this is my equation 5

which is actually equal to beta r hat minus beta u hat equals to minus X prime X inverse

R prime lambda (refer to slide time 30:50).

So, what we are doing is that, in place of lambda, we are substituting the value. Now, ur

hat is equal to y minus x beta r hat. This is further written as y minus X beta u hat. I



incorporate 1 minus X beta u hat. As a result of which, I also incorporate 1 X beta u hat

minus plus, so that they cancel out.

This equals to uu hat y minus X beta u hat. And then, by taking X common, we have beta

r hat minus beta u hat. So, ur hat prime ur hat is equaled to this entire thing prime

multiplied by again this entire thing.

Now, I expand them. I have uu hat prime multiplied by uu hat. Then uu hat, and then uu

hat prime multiplied by X beta r hat minus beta u hat is equaled to 0 because we, this is

under one of the CLRM assumptions that, there is independence between the residual

terms and the independent variables.

Similarly, this multiplied by this will also be equals to 0, for the same reason. So what I

am left with is beta r hat minus beta u hat prime multiplied by X prime, then X and beta r

u, beta r hat minus beta u hat, which implies that Ur hat prime Ur hat minus uu hat prime

uu hat is equal to this expression.
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Substituting the value of beta r hat minus beta u hat from equation 6. What I get is R beta

hat u minus q prime, then the entire thing, again multiplied by R beta hat u minus q.

You can see that this expression gets canceled out. First of all, two cancels out. Then RX

prime X inverse R prime also gets cancels out with the inverse. So, I am left with R beta

hat u minus q prime multiplied by RX prime X inverse R prime whole inverse multiplied

by R beta hat u minus q.

And uu hat prime uu hat is equal to sigma hat square multiplied by n minus k. This is

something we have already discussed and derived earlier. Therefore, the expression is

equal to the expression in the numerator, except for the sigma hat square term. And

divided by J.

And, also this expression. Rather, this expression is divided by n minus k. So as earlier I

have shown you that n minus k, n minus k cancels out and this sigma hat square basically

goes up. So we are left with this expression which follows an F distribution with J and n

minus k degrees of freedom.

So this proves that this expression is exactly equivalent to another expression. So,

whatever form of F distribution you use, we arrive at basically the same result.
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So this is all about the F distribution, its basic characteristics. I have followed these books

in order to come up with the discussion (refer to slide time 34:48). In the next module, I

will discuss some of the examples of F distribution along with some of its applications.

Thank you.


