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Welcome back to the course on econometric modelling; this is module 30. Modules 30 and 31

are devoted to spline function estimations and categorical variables. Basically, here we are

dealing with categorical variables, we would be considering categorical variables in the

independent as well as dependent variables. Now, independent variables should be first

considered; because at times categorical variables in the independent variable actually much

easier to interpret and handle.

¯
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So, first, we define what are categorical variables. Barring the discussion on seasonality, so far,

the dependent and independent variables in our multiple regression models have had quantitative

meaning. For example, they were mostly numbers and numbers conveyed certain meaning. Just a

few examples include hourly wage rate, years of education, college grade point average, amount

of air pollution, level of firm sales, GDP or GDP growth rates, inflation, interest rate etcetera. In

each case the magnitude of the variable conveys useful information; that is why we call them

quantitative variables.

In empirical work, we must also incorporate qualitative factors into regression models. So,

qualitative factors are the factors that can be assigned certain numbers. But, then the numbers

themselves do not speak of anything. So, for example, gender or race of an individual, the

industry of a firm like manufacturing, retail, and so on. All these are qualitative attributes or

features of certain entities. So, we can assign numbers to them in order to facilitate our

calculations, estimation, modelling etcetera. But the numbers themselves do not convey any

meaning. So, that is why we call them qualitative factors or qualitative variables.

The other examples are the region in a country like south, north, west, and so on; they are all

considered to be qualitative factors because ideally, they are qualitative features or characteristics

of an entity or an individual. For example, while working with males, gender we can assign one



to male and zero to female, and vice versa. So, first, it does not matter whether we are assigning

one to male or one to female and zero to the other category. We certainly have a different

interpretation depending on what is being coded as one or zero.

But then having coded 1 to any particular category does not impact the results; the interpretation

may only differ. And simply having one zero is also not going to tell us that which attribute I am

describing unless and until I specify that one here refers to the gender male. That is how the

numbers here actually do not speak much; what matters is the qualitative factors.

(Refer Slide Time: 03:36)

So, qualitative factors often come in the form of binary information, like a person is female or

male, married, or unmarried or a financial institution is a banking institute or not. So, on that

basis we can assign one or zero to any of the categories; one to one category and 0 to the other

category. Here the relevant information can be captured by a binary or zero-one variable. In

econometrics binary variables are commonly called dummy variables, but we can also have

dummy variables with more than one category. Just as we have discussed in the context of

seasonal variations that seasonality is also captured using seasonal dummy variables, where we

have multiple dummy variables for different seasons.



But yes, of course, one dummy variable is taking only two values that are one and zero; and that

is why binary variables are most commonly known as dummy variables. However, it is not

necessary for the qualitative factors to have only two categories. Categorical variables can be

dichotomous that is having only two categories or polychotomous that is more than two

categories. So, dummy variable regression can also be of two types, dummy explanatory or

independent variables, and dummy dependent variables. So, first of all, we will be discussing

dummy explanatory or independent variables.

(Refer Slide Time: 05:02)

And we also begin with only dichotomous variables. So, we first consider the simplest case of

only a single dummy explanatory variable, gender; and one independent variable, say education.

Here the dependent variable is quantitative, say hourly wage. What we are trying to find out is

that whether hourly wage varies between males and females; or whether it depends on the gender

of an individual or not, given the education level. So, the model is (refer slide time: 5:35). Now,

you can see that here we are having only females because there should be only one dummy

variable when there are two categories.

And the dummy variable takes value one for females; and otherwise, it takes the value of 0. We

could have also expressed the model as (refer slide time: 6:03). The parameter is interpreted asδ

the difference in the hourly wage between females and males, given the level of education and



the error term is the same. If , then for the same level of other factors including education,δ
0

< 0

women earn less than men on average; that would have been the interpretation of this parameter.

In terms of expectations, measures the expected value of wage, given that female is equal to 1δ
0
 

i.e. females take the value 1 in the dummy variable and also the level of education, (refer slide

time: 6:52). So, education is controlled for females equal to 0, gives us the value associated with

males; or expected value expected wages associated with males. And this of course gives us the

expected wage associated with females. The difference between them is reflected in the

parameter of this dummy variable or categorical variable.
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Alternatively, the representative equations for female and male; that is when female equals to 0

are (refer slide time: 7:34- 8:05).

Therefore, the inclusion of a dummy variable implies a shift in the intercept term. So, whenever

the dummy variable takes a value of 1, there is a shift in the intercept term. Of course, the shift

can be positive or negative; if it is positive, if value is positive, then it shifts upward; if valueδ δ

is negative, it shifts downward. Before we depict it graphically, it is important to note that when

there are two groups of the independent variable, then we need to use only one dummy variable;

this has been also discussed earlier. Using two dummy variables would introduce perfect

collinearity as male plus female equals 1, and this is the so-called dummy variable trap.

So, whenever we have a number of dummy variables equal to the number of categories of the

independent variable; then we are actually into a dummy variable trap. Also note that male is the

base or benchmark group and hence is the intercept for male, and is the difference in theβ
0

δ
0
 

intercepts between males and females. So, this is also obvious from these two equations that isβ
0

the intercept for male because here female equals to 0. And gives us the intercept forβ
0
+  δ

0
 

females. As a result of which the difference between the two is . The is the difference in theδ
0

δ
0
 

intercepts between males and females.
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So, we now show it graphically. The interpretation of the parameters is as follows, gives theδ
0
 

difference between the two regression lines. So, this is basically the regression line for males,

and this is the regression line for females. So, you can see that since the regression line for a

female is down or lower than the regression line for males; so, must be a negative number.δ
0
  

And this slope is of course given by this which is the other independent variable that is

education. If the average income of male is more than female will be negative, otherwiseδ
0
 

positive.

So, is positive, then this line would be the regression line for women and would be on top ofδ
0
 

the regression line of males. And this would indicate that the average income of females is more

than the average income of males. gives the intercept for males and is the commonβ
0
 β

1

education slope. Model building and interpretation of the parameters will not be any different if

there are more than one independent variable. So, even if we have several independent variables,

then of course we have to move on from a two-dimensional plane to an n-dimensional plane in

order to show it graphically, but the interpretation remains the same.
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Now, we talk about polychotomous dummy variables. Polychotomous dummy variable refers to

having multiple categories of a dummy variable. Consider a regression of log income on

education across three categories of occupation: white-collar jobs, blue-collar jobs, and manual

workers. The regression equation will take the following form that is (refer slide time: 11:27),

and and are basically the two dummy variables corresponding to the two different𝑑
1𝑖

𝑑
2𝑖

categories. There are three categories of the variable measuring occupation, and we are having

two dummy variables.

, if the individual i is in the white-collar job; otherwise, 0. , if the individual is in𝑑
1𝑖

= 1 𝑑
2𝑖

= 1

the blue-collar job; otherwise, 0. And as you understand that since there is no dummy for the

manual workers; then manual workers or manual is the base category, and is the parameterα

associated with it.
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The model describes three parallel regression lines here. For white-collar jobs we have (refer

slide time: 12:20). The coefficients of the dummy variables are interpreted as the proportionate

difference in the income relative to manual workers. Now, here we are talking about the

proportionate difference in income because we are having a logarithm of income as the

dependent variable.

Earlier in the previous example with the dichotomous variable, we had only wage. So, if we

consider wage, then this simply measures the difference in the wages. If I am considering log



wage or log income; and then we are basically the interpretation would be that the proportionate

difference in the log in the income of people across different occupations. The coefficients of the

dummy variables are interpreted as the proportionate difference in income relative to manual

workers. For example, suppose, the estimated equation is (refer slide time: 13:43).

It shows that people in white-collar jobs earn 21 percent more than people in manual jobs; and

similarly, for those in blue-collar jobs, the income is 15 percent higher.

(Refer Slide Time: 14:07)

Now, we talk about ordinal variables. When we were discussing previously the categories, we

could see that there was no ordering of the variables. So, male and female, there is no ordering in

the sense that if we assign number 1 to females; that does not imply that females are better than

male. Or if we assign number 1 to male, then males are better than females. Similarly, when it

comes to occupation also, we are not getting into any ordering of the jobs; like whether

white-collar jobs are better than blue-collar jobs or manual jobs are better etcetera.

But, then in certain cases, very clear-cut orderings are possible. For example, whenever there are

some rankings, then we can go for orderings. So, ordinal variables are variables with categories

that can be ranked or ordered. For example, if we consider education levels and categorize them

as less than bachelor’s degree, BA. So, we are just considering, for example, bachelor’s in arts;



one can consider any other discipline like bachelor’s in science, B-tech and things like that. But,

just, for example, less than Bachelor of Arts is one category; then a bachelor of arts, then master

of arts, and finally Ph.D.

So, these things can certainly be ranked because one degree is higher than the other degree. So, if

we can categorize them like this, the education levels in a model assessing the impact of

education and age on an individual’s income. Then the model for an individual can be specified

like this, where we are having ordinal dummy variables. So, (refer slide time: 16:01). So, we are

again having three dummy variables for four categories.

(Refer Slide Time: 16:37)

The model can be stated as (refer slide time: 16:42- 17:05). Note that earlier education measured

in terms of the number of years was incorporated as a cardinal variable or quantitative variable.

Under the assumption that an increase in education by one year will have a constant impact on

income. So, whenever we go for a regression line, and we are having education as the

independent variable; then the interpretation is that if education increases by one percent or one

unit or by one year. Then of course, when we are measuring education in terms of the number of

years spent on education, then one unit increases in education and then how it is going to impact

the income. So, how much, by what percent income is increasing, or how income is changing.

So, that is how we interpret the coefficients of a quantitative variable. Alternatively, education



levels can be recorded as, 0 for less than BA, 1 for BA, 2 for MA, and 3 for Ph.D. This would

also imply a constant partial effect from one education level to another on income.

So, instead of having education level measured in terms of ten years in on education, eleven,

twelve, thirteen, and so on. By focusing on degree, we can also have only one variable; and the

variable will have four alternative values 0 for BA, less than BA, 1 for BA, 2 for MA, and 3 for

Ph.D. So, this is a single variable, this is not a dummy variable; a single variable having only

four alternative values.
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So, this is also a variable that can capture the impact of degrees on income. But the assumption is

that whenever we move from one level to another level of education; the impact of it on income

remains constant. That is whenever we are moving from BA to MA, the impact income is

increasing by certain percentages. And the income increases in that percent only, whenever a

person moves from MA to Ph.D. So, the partial effect on the income of different degrees or

change in different degrees remains constant. However, it is possible that an increase in the

levels of education measured in terms of degrees will not have a constant impact across all

categories.

That is an increase from BA to MA and from MA to Ph.D. might not have this same impact on

income. So, in that case, that the partial impact of education or different degrees will not have the

same impact on income. So, a model with a constant partial effect across all degrees can be

obtained as a special case from equation 1. So, equation-1 is not an equation since it takes into

consideration different dummy variables for different degrees. And it allows for variation in the

coefficient associated with different degrees on income. We are not assuming a common constant

partial effect.

A common constant partial effect emerges when we have a single variable recording the degrees

like this. So, our model inclusion of dummy variables allows for changes in the partial effect.

But a model with a constant partial effect across all degrees can be obtained as a special case of



equation-1 that is of the dummy variable case. If we construct the independent variable having

four categories, such as 0, 1, 2, and 3, then the following restrictions on equation-1 would imply

a constant partial effect. That is what the restrictions are (refer slide time: 21:14- 23:28).

Those are who are less than BA. So, that refers to that one variable that has only four categories:

0 for less than BA, 1 for BA, 2 for MA, and 3 for Ph.D. And we obtained a single parameter

estimate . So, this is the case of constant partial effect which can be obtained as a special caseδ
1

of the dummy variable thing.
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The term this in equation-2 is simply having education level measured as a categorical variable

with 4 categories from 0 to 3. One can test for the constant partial effect restrictions using an F-

test, where equation-1 gives us the unrestricted regression. This is our equation-1, this is the

unrestricted regression, and after incorporating these restrictions equation-2 is the restricted

regression. For the given example, the F-statistics will have 2 and degrees of freedom. 2𝑛 − 5

because there are only two restrictions; and there have been originally 5 independent variables.

And that is how degrees of freedom for the denominator.𝑛 − 5
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Now, we will talk about interactions involving dummy variables. Interaction terms allow a

regression equation to reflect on the possibility of interactions between two variables. So, how

these two variables would interact with each other, other than impacting the independent variable

solely or on their own complete. This can also be done with qualitative variables. Consider the

following equation, where we have . Hat here implies that this is an estimatedlog 𝑙𝑜𝑔 (𝑤𝑎𝑔𝑒) 
^

equation because we are not including any residual term here. And we are also mentioning the

estimates, (refer slide time: 25:24).

So, we are interested in the dummy variable components and their interactions; and not in these

independent variables as such. Here is a significant coefficient of females multiplied by married

would indicate the presence of an interaction between gender and marital status. And which is

separate from the impact of gender and the impact of marital status. So, in the above equation

setting female equals to 0 and married equals to 0 would correspond to the group of single men

which is the base group. So, the base group is female equals 0 and also married equals 0; so, the

base group is 0.32. So, 0.32 is referred to the coefficient associated with single men. The

intercept for a married man or married man can be obtained by setting female equal to 0, and

married equals to 1. So, female equal to 0, married equals to 1 gives us 0.21; and female equals

to 0 gives us 0.32.

So, the intercept for married men can turn out to be , so this is how we0. 32 + 0. 21 = 0. 53

can interpret the different components of dummy variables as well as their interactions. Now, the

interaction here -0.30; 0.30 implies that female married women are having 30 percent lower

wages compared to the base category of single men.
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There are also occasions for interacting dummy variables with explanatory variables that are

dummy variables to allow for differences in slopes. So, so far, we have been considering only

indifferences in the intercept; now, considering differences in slopes. So, continuing with the

wage example, suppose that we wish to test whether the return to education is the same for men

and women, allowing for a constant wage differential between men and women. So, considering

the model, (refer slide time: 28:12- 28:44 ).
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(Refer slide time: 28:45- 29:10). That is the slope of the regression line; we consider two

possible cases. So, the first case is , and . This is the case where the intercept forδ
0

< 0 δ
1

< 0

women is below that for men, and the slope of the line is smaller for women than for men. This

means that women earn less than men at all levels of education, and the gap increases as

education get larger.
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So, this is the case of a. You can see that women have a lower slope, and the gap increases with

an increase in education. Then, the other cases , and . In this case, the intercept forδ
0

< 0 δ
1

> 0

women is below that for men; so, to begin with, women of course obtain lower wages. And that

is why it has a lower intercept, but the slope on education is larger for women. This means that

women earn less than men at low levels of education, but the gap narrows as education increases.

At some point, a woman earns more than a man, given the same levels of education; so, there is a

crossover.

So, after some point, the income of women increases or the income of women is proportionately

more than that of men, given the same levels of education. So, this is how we allow differences

in slopes.
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And finally, I talk about estimating the spline function. Spline techniques involve estimating

polynomial functions in a piecewise fashion through linear models. A simple piecewise linear

model could operate as follows. If the relationship between two series, , and , differs𝑦 𝑥

depending on whether is smaller or larger than some threshold value ; this phenomenon can𝑥 𝑥*

be captured using dummy variables. Again, consider income ( ) and education , and when𝑦 (𝑥)



plotted it shows some non-linearity. But the relationship is linear in different segments; so, this is

how it may look like.

So, you can see that overall, the relationship is non-linear; but it is actually linear in the segment.

So, we can go for piecewise linear estimation, and this is what we called spline technique or

spline estimation. So, how do we do it? Very simply using dummy variables. So, for different

segments, the regression is also done piecewise. So, first of all, at there are knots or the𝑡
1
*  𝑎𝑛𝑑 𝑡

2
*  

slope changes; the slopes change after . For each individual, we create a dummy𝑡
1
*  𝑎𝑛𝑑 𝑡

2
*

variable such (refer slide time: 32:07).
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And the model is specified as (refer slide time: 32:29- 34:07). Now, the interpretation of andγ θ

are very similar to the dummy variable interpretation of the coefficients of dummy variables;

there is nothing specific about it. The only thing is that it shows how we can estimate and

non-linear function by going for piecewise linearity, and that is done by including dummy

variables.



That brings me to the end of the discussion on the models that could be estimated with dummy

independent variables. In the next module, I will be discussing dummy dependent or regression

models with dummy dependent variables. Thank you.


