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This is Module 37 of the course on Econometric Modelling. Module 37 is a part of multivariate

models, and this is sort of the last part. So, here in this module, we are going to discuss the

introduction to VAR. VAR stands for vector autoregressive models.
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So, vector autoregressive models were popularized in econometrics by Sims in 1980, as a natural

generalization of univariate autoregressive models. We have so far studied univariate autoregressive

models like the autoregressive models AR models: AR(1), AR(2), and AR(P), and also we have

considered the MA model moving average models.

Now, this is an extension of those autoregressive models, univariate autoregressive models, but of

course, this is a vector autoregressive models are not univariate in its true sense, it is multivariate. So

this is an extension of univariate series to multivariate structures. A VAR is a system regression model

that is there is a set of endogenous variables that can be considered a kind of hybrid between the

univariate time series models that we have studied earlier and the simultaneous equations models.

VARs have often been advocated as an alternative to large scale simultaneous equations structural

models, the simplest case that can be entertained is a bivariate VAR, that is, there are only two

variables where the two variables are and each of whose current values depend on different𝑦
𝑡

𝑧
𝑡

combinations of the previous values of both variables and error terms. So, how do we write the VAR𝑘

models?
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So, this is an example where we are writing (refer slide time: 2:19- 3:08 ) and then we have two error

terms you is the error term associated with the first equation and is the error term associated𝑢
1𝑡

𝑢
2𝑡

with the second equation.

And as you can see that they are specific to our time period. So, at time period t we are considering k

lagged values of both the variables and trying to explain the value of or trying to figure out  𝑦
𝑡



whether these lag values explained or not. And in a similar fashion at time period t we are𝑦
𝑡

examining whether the lag values of both and explain the current value of or not.𝑧 𝑦 𝑧

Now, this where i equals 1 and 2 is a white noise disturbance term, and we assume it to have an𝑢
𝑖𝑡

𝑠

expected value equals to 0, and there is no covariance or correlation between these two error terms

that is the expected value of and also equals to 0. So, basically, the errors are independent of𝑢
1𝑡

𝑢
2𝑡

each other.

Now, an important feature of the VAR model is its flexibility, and ease of generalization. For example,

the model could be extended to encompass moving average errors as well, which would be a

multivariate version of the ARMA model known as VARMA. Instead of having only two variables 𝑦
𝑡

and the system could also be expanded to include variables g can be any number. So, we begin𝑧
𝑡

𝑔

with an example of can be 3, 4, 5, 6, 10 anything, such that, we have .2𝑔 𝑦
1𝑡

,  𝑦
2𝑡

, 𝑦
3𝑡

, …𝑢𝑝𝑡𝑜 𝑦
𝑔𝑡

And similarly, we can also have several equations or several variables.

So, instead of having variables and now, we are having , we can also call them like𝑦
𝑡

𝑧
𝑡
 𝑦

1𝑡
,  𝑦

2𝑡
, 𝑦

3𝑡
𝑦

𝑡

, , , and so on. So, each of which has an equation. In a VAR system, each one of these𝑧
𝑡

𝑤
𝑡
,  𝑋

𝑡
  

variables will have an equation, which will have lagged values of all the variables included therein,

and we need to find out whether the lag values of the variables explain the current value of a

particular variable or not.
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So, since all the variables are endogenous, there is no requirement for specifying endogenous and

exogenous variables and consequent identifying restrictions like simultaneous equations system

models. If there are no contemporaneous terms on the right-hand side of the VAR specification, it is

possible to simply use OLS separately on each equation.

So, the contemporaneous terms here are the terms that refer to the same period, as the left-hand side.

So, for example, (refer slide time: 6:05). So, no contemporaneous terms on the right-hand side. And

therefore, these equations can be estimated simply using OLS by estimating one after another. So, one

equation at a time.

This arises from the fact that all variables on RHS are predetermined, we know the values of them,

that is, at time t they are known. This implies that there is no possibility for feedback from any of the

LHS variables to any of the RHS variables. So, this implies that we are having all lagged values on

the right-hand side, which implies that by the time, time t comes, we have observations on all these

variables.

And that is why it is not possible that the left-hand side is explaining the right-hand side. The

left-hand side does not explain the right-hand side. So, there is no feedback from the left-hand side to

the right-hand side. The right-hand sides are already observed variables, and that is why there is a

problem in estimating these equations using OLS.

The forecast generated by VARs is often better than traditional structural models. This could perhaps,

arise as a result of the ad hoc nature of the restrictions placed on the structural models to ensure

identification. In structural models, that is, simultaneous equation systems we needed some

identification restrictions. So, now since we do not need to come up with similar restrictions, this is an



added advantage. But then, VARs have certain problems also. So, VARs are a-theoretical, which

implies that it is actually not generally driven by any theoretical understanding.

(Refer Slide Time: 8:14)

So, since they use little theoretical information about the relationships between the variables to guide

the specification of the model, we call them a-theoretical. Consequently, there is always a possibility

that a researcher could obtain an essentially spurious relationship by mining the data.

So, since it is not driven by any theoretical understanding, it may happen that I estimate a VAR model

involving 2, 3, 4, 5 variables, and I also observe certain relationships between them, but then the

relationships are actually spurious in the sense they are not meaningful from economics perspectives.

So, because it does not have any underlying theory explaining the relationships between these

variables.

VARs also have the problem of too many parameters. If there are g equations and each of variables𝑔

has lags in each equation, then there will be parameters to be estimated in the entire𝑘 (𝑔 + 𝑘𝑔2)

system. For example, if , then there will be 30 parameters to estimate. For a𝑔 = 3 𝑎𝑛𝑑 𝑘 = 3

relatively small sample size, degrees of freedom will rapidly be used up implying large standard errors

and therefore wide confidence intervals for more model coefficients.

So, what is happening here is that even if I work with say, roughly, 50 years of data, but if I have 3

variables in a way or model, then I will be estimating 30 parameters, and left with only 20 degrees of

freedom. So, degrees of freedom are being used up very quickly when we have a VAR system with

many variables and relatively the sample size is small.

(Refer Slide Time: 10:01)



Now, I come to the point of how to select the lag lengths for VAR models. There are broadly two

methods that can be used to arrive at the optimal lag length. The two alternative methods are

cross-equation restrictions and information criteria. In cross equation restriction, suppose that a VAR

estimated using quarterly data has 8 lags of the two variables in each equation. So, for example, the

example that we had taken in the beginning that will have (refer slide time: 10:32).

Now, it is desired to examine a restriction that the coefficients on lags 5 to 8 are jointly 0, if we want

to find out whether the coefficients of lags 5 to 8 or jointly 0 then what do we need to do this can be

done using a likelihood ratio test. So, denote the variance-covariance matrix of the residuals, the

residuals are (refer slide time: 11:06- 11:59).

Now, as I have just mentioned that this this sign actually refers to the determinant of the∑
𝑟

^

variance-covariance matrix of the residuals for the restricted model, so is actually the covariance∑
𝑟

^

variance matrix obtained from the restricted model where is the variance-covariance matrix∑
𝑢

^

obtained from the unrestricted model. The unrestricted model has all 8 lags and the restricted model

has only 4 lags because we are putting the restrictions in the restricted model that the coefficients of

lags 5 to 8 are jointly 0 and T is the sample size.

So, this is very similar to the kind of F-test we have conducted or considered earlier. But the

application of the F-test is more problematic here. And the reason is that, if you expand or convert the

expression for the VAR model in terms of the error terms, you would find that the error terms are

actually serially correlated. So, as a result of which application of F-statistic is not desirable, because

the error covariance variance is not the most efficient one. So, we have the OLS estimates, but the



OLS estimates may not be the most efficient ones. So, that is why we prefer to go for a likelihood

ratio test.

(Refer Slide Time: 13:30)

The test statistic is asymptotically distributed as a chi-square variant with degrees of freedom equal to

the total number of restrictions. In the VAR case above, 4 lags of two variables are being restricted in

each of the 2 equations, which implies that a total of 16 restrictions are there. In the general case of

VAR with equations to impose the restrictions that the last q lags have 0 coefficient, there will be𝑔

restrictions altogether. This is because there are variables.𝑔2𝑞 𝑔

So, in each equation, I will be having multiplied by restrictions and then there are equations𝑔 𝑞 𝑔

because for each and every variable there is an equation, so that is why I arrive at . Intuitively, the𝑔2𝑞

test is a multivariate equivalent to examine the extent to which the RSS rises when a restriction is

imposed. If the determinant of and determinant of are close together, the restriction is supported∑
𝑟

^
∑

𝑢

^

by the data, which implies that we do not reject the null hypothesis.

And the null hypothesis is that the lags of 5 to 8 lags are jointly 0 or the coefficients associated with

the fifth to eighth lags are jointly 0, that null hypothesis is not rejected. And that is why the restriction

is supported by the data. Alternatively, we accept the null hypothesis that the coefficients on lags 5 to

8 are jointly 0.
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Now talking about the alternative methods of why do you need to consider an alternative method of

information criterion. So, the problem with the likelihood ratio test is that the chi-square test will

strictly be valid asymptotically only under the assumption that the errors from each equation are

normally distributed.

So, an alternative approach to selecting the appropriate VAR lag length would be to use an

information criterion. Information criterion was earlier introduced in module 27. Again, in the context

of selecting the lag lengths of AR, ARMA models. So, they were in the context of univariate series,

and now, we are in the multivariate arena, so we are having multivariate AIC, multivariate SBIC, and

multivariate HQIC.

So, information criteria required no such normality assumptions concerning the distributions of the

errors. Instead, the criteria, as mentioned earlier explained earlier, trade-off a fall in the RSS of each

equation, RSS here stands for a Residual Sum of Square as more lags are added with an increase in

the value of the penalty term and that is why they are preferred over the other method of cross

equation restrictions at least when we do not expect the data to have or the errors to have a normal

distribution.



(Refer Slide Time: 16:36)

So, the formulas are very similar. Only in place of the previously estimated error variance, we are

having this and the rest of the expressions are the same. Another difference is that we are having∑
^

𝑘́

here. Now, here, is, of course, a variance-covariance matrix of the residuals, T is the number of∑
^

observations and is the total number of regressors in all equations, which will be equal to𝑘́ 𝑔2𝑘 + 𝑔

for equations in the VAR system, each with lags of the variables plus a constant term in each𝑔 𝑘  𝑔

equation.

So, because of those constant terms, we are having a plus here and for lags in equations, we are𝑔 𝑘 𝑔

having . So, that total number of variables or coefficients would be equal to in the𝑔2𝑘 𝑔2𝑘 + 𝑔

information criterion.
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Now, let us consider VARs with contemporaneous terms. What if we include contemporaneous terms

on the right-hand side? So, we have included here (refer slide time: 17:44- 18:28). This would be

known as VAR in primitive form, similar to the structural form for a simultaneous equations model.

Because you can see that we have endogenous variables both on the right-hand side as well as on the

left-hand side. This VAR is not identified.

In order to circumvent this problem, a restriction that one of the coefficients on the contemporaneous

terms is 0 must be imposed. So, in order to make this system identifiable, we need to have either (refer

slide time: 19:00- 19:28). So, we have a recursive system or a triangular system, which was

introduced while discussing the simultaneous equation system. So, that is how we can obtain a

triangular set of VAR equations that can be validly estimated. The choice of which of these two

restrictions to impose is ideally made on theoretical grounds.
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The contemporaneous terms can be taken to the left-hand side and the primitive form can be written

as this. So, now we are basically, we have moved (refer slide time: 19:59- 21:05). So, this is known as

the standard from VAR, which is akin to the reduced from a set of simultaneous equations. So, we

obtain reduced form in a simultaneous equation system in a very similar fashion. Therefore, it can be

estimated equation by equation using OLS, the way reduced from can be estimated in a simultaneous

equation system using OLS.

(Refer Slide Time: 21:26)

Now, we talk about Granger Causality Test. This is something, which is often associated with VAR

systems. So, equations 1 and 2, these two equations, allow us to test whether after controlling for past

past helped to forecast or not. Generally, we say that, (refer slide time: 21:48- 23:00).𝑦 𝑧 𝑦
𝑡



Once we assume a linear model and decide how many lags of should be included in the expected𝑦

value of conditional upon its past values, we can easily test the null hypothesis that does not𝑦
𝑡

𝑧

Granger cause . Now in this context, let me tell you that the Granger causality test is named after𝑦

Granger. I think the test was suggested in 1976.

(Refer Slide Time: 23:22)

Now, for example, (refer slide time: 23:24- 25:50). Assuming that all of the variables in the VAR are

stationary, the joint hypothesis can easily be tested within the F-test framework. Since each individual

set of restrictions involves parameters drawn from only one equation.
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There is an extended definition of the Granger Causality Test that is often useful. So, let us consider

be a third series or it could represent several additional series. Then Granger causes conditioner𝑤
𝑡

𝑧 𝑦

on W if 4 holds so, this was my condition 4, and but the thing is that now, minus one contains𝐼
𝑡−1

past information on not only and like previously, but now it contains information on , , and .𝑦 𝑧 𝑦 𝑧 𝑤

While contains past information on y and w because we are focusing only on whether z𝐽
𝑡−1

𝑧,

Granger causes or not. So, all other variables are there in j. It is certainly possible that z Granger𝑦

causes y, but that does not Granger causes y conditional on w. Tests of the null hypothesis that z does

not Granger cause y conditional w is obtained by testing for significance of lagged z in a model for 𝑦

that also depends on lagged and lagged .𝑦 𝑤

For example, to test whether growth in the money supply Granger causes growth in real GDP or not

conditional on the change in interest rates, we would regress that is the growth in GDP on lags𝑔 𝐺𝐷𝑃

of , change in the interest rate, and growth in money supply and do a significant test on the lags𝑔 𝐺𝐷𝑃

of only growth in the money supply.
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Now we consider VAR with exogenous variables. This is just a very brief introduction to it. So, we

consider the following VAR (1) model while (refer slide time: 27:52- 28:12)

The components of the vector are known as exogenous variables since their values are determined𝑋
𝑡

outside the VAR system. And this also implies that we ideally will have no equations for the variables

that are included in the vector . Such a model is sometimes termed VARX. Although, it could be𝑋
𝑡

simply viewed as a restricted VAR where the coefficients of the equations for each exogenous variable

are restricted to 0.
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Now, we take a take an example of a VAR model. How it is estimated or how the estimated results

look like? So, let us consider the relationship between the daily returns of three exchange rates against

the US dollar that is the Euro the British pound, and the Japanese Yen. And for the period of July 7,

2002, to July 7, 2007, first, we need to determine the lag length using alternative information criteria.

So, the following table shows that AIC suggests a VAR (1) because you can see that all our

insignificant a star indicates a significance level adulate rate of 5 percent. So, VAR (1) is suggested by

AIC while SBIC and HQIC indicate 0 lag length, that is, they both suggest 0 order as optimal.
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However, suppose we estimate a VAR (2) model, this is just an example. So, the results are given in

the following table which shows that these are the variables. So, this is say , this is and this is .𝑦
𝑡

𝑍
𝑡
 𝑁

𝑡

REUR refers to return from euro return from the GBP that is Great Britain pound and this is Japanese

Y return from Japanese Yen.

Now, and we have considered VAR( 2), so for each and every variable we have two legs you can see

and then one constant term. So, this is how VAR results are reported. Now, of course, very,

unfortunately, none of these variables appear to be significant, though some of them are probably

close to a 10 percent level of significance, but none at 5 percent at least.

(Refer Slide Time: 30:27)

And finally, I also report the Granger Causality Test results. And you can see that, again, the

dependent variable REUR here RGBP here and RJPY here. And we are basically excluding RGBP,



we are considering the impact of RJPY excluding RJPY, RJYP we are considering the impact of

RGBP and things like that. The chi-square values, degrees of freedom, and probabilities are

mentioned here.

Again, this shows that none of them none of these are basically significant, which implies that none of

the returns actually significantly cause the other returns. The results show very little evidence of

lead-lag interactions between the series. Since we have estimated at tri-variate VAR three banners are

displayed with one for each dependent variable in the system. None of the results show any causality

that is significant at the 5 percent level.

So, that is broadly about the VAR models at all I wanted to talk about. VAR models have some other

important applications like calculations of impulse responses, but that would remain outside the scope

of this course. Because, again, there is time and space constraint. So that is all about me or model.

These are the references I have broadly followed. Thank you.


