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Hello and welcome to module 6 of econometric modelling. This is the first module in part -2

where we present the overview of the classical linear regression module. So, there are 2

modules assigned to the concept of simple regression, modules 6 and 7. So, this is the first

module on simple regression. Regression as has already been mentioned that this is the main

technique in econometrics and we actually use different modifications and different types and

varieties of regression methods only besides certain other methodologies of course.

But this prepares the basic or the background of the majority of the econometric methods and

that is why we begin with simple regression. Simple regressions specifically refer to the

situation where we have only 2 variables to deal with, one is a dependent variable, one is an

independent variable.

Now regression technique, let me tell you, at the beginning that regression technique the

name has come from the fact that we actually regress. So we already have observed certain

observations or observed certain events, collected data on them so when we already have data

on the observed events or facts then we try to find out any relationship between 1 or 2 or

more variables. Since we are regressing, going back, in order to explore the relationship

between 2 or more variables, it is called a regression technique.
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Now, how it is done between 2 variables is the primary concern of this module and the next

one. So, the simple regression model can be used to study the relationship between only 2

variables. Suppose the scatter plot between 2 variables like x and y, looks like this. So, this is

the scatter plot where we have values of x plotted against values of y where we are measuring

x on the horizontal axis and y on the vertical axis.

Now, these are the scatter plots and what we try to do in regression is, try to explore a linear

relationship between x and y. So, if we try to explore a linear relationship between x and y,

then this diagram at least shows that there could be possibly a positive relationship between x

and y which implies that when x increases y also increases or vice versa, so there is a positive

relationship.
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So, in this case, it appears that there is an approximate positive linear relationship between x

and y which means that, increases in x are usually accompanied by increases in y and that the

relationship between them can be described approximately by a straight line such as

(1)𝑦
𝑡

= α + β𝑥
𝑡

This is actually the same as any equation for a straight line so straight-line equations are

, so here c is equivalent to and m is equivalent to .𝑦 = 𝑚𝑥 + 𝑐 α β

So, I am simply coming up with a straight-line relationship between x and y. Now here t

denotes t’th observation. We can also replace t with i, so if I write then it would𝑦
𝑖

= α + β𝑥
𝑖

be the same thing, would refer to a cross-sectional data and t refers to a time series data, but�

this is an exact equation implying that the value of one variable will be given by any value of

the other variable with certainty and this is something unrealistic.

Unrealistic, because in the beginning if you remember, we stated that we work with random

variables and random variables have certain randomness or uncertainties associated with

them. So, in this case, if this is a relationship then this can be called a deterministic

relationship. Deterministic relationship means it does not have any randomness, any

uncertainty, we can determine the value of for given values of , and with 100𝑦
𝑡

α,  β 𝑥
𝑡

percent accuracy or certainty.

So, this is something unrealistic when we go for a prediction of economic variables or even if

you do not go for prediction of economic variables, if we go for modelling of economic



variables, we will find that it is not possible to come up with predictions or estimations of

economic variables with 100 percent certainty. I tried to model inflation as explained by a

large number of other economic variables.

Now whatever be it, if I try to predict inflation for the upcoming periods, it is not possible or

most often not possible to come up with a prediction of inflation with 100 percent accuracy

because there is certain randomness associated with movements in prices or inflation figures.

(Refer Slide Time 6:03)

So, that is how we have this simple regression model which is defined as

(2)𝑦
𝑡

= α + β𝑥
𝑡

+ 𝑢

So, this randomness is introduced here, it is also called the two-variable linear regression

model or bivariate linear equation model. y is called the dependent variable or the explained

variable or the response variable or the predictive variable or the regressand. So, these are

alternative names used for y, and for x we have these names which are independent variable,

explanatory variable, controlled variable, predictive variable, or the regressor.

So, what we are doing is that we are trying to find out how impacts or changes in𝑥
𝑡

𝑦
𝑡

𝑥
𝑡

impact . We would come to the specific interpretation a little later but one thing to be noted𝑦
𝑡

here first is that y always refers to the dependent variable, the variable and x refers to the

independent variable or explanatory variable that is the variable used to explain changes in y.
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We introduce the randomness by including u, the variable u called the error term or

disturbance in the relationship represents factors other than x that affect y. So, in any model,

whatever big it is, whatever close you try to make it to the reality, some kind of randomness

always remains there as a result of which most of it, we are not able to come up with 100

percent accuracy and all those randomnesses could be, it can be completely a random factor,

it can be certain factors which are not included in the model.

And because of which all those components are being clubbed into the unobserved

components denoted by u. If other factors in u are held fixed such that Δui = 0 then equation

2, also gives the functional relationship between y and x as , this is simply∆𝑦
𝑡

= β∆𝑥
𝑡

because if we measure changes then we have (refer slide time 8:39)

We are assuming delta Δut = 0 or Δui = 0 and that is why Δyt = and is of course 0β∆𝑥
𝑡

∆α

because as I have mentioned that is a constant, it cannot change thus the change in y isα

simply that is actually a very crucial thing in understanding the interpretation ofβ∆𝑥
𝑡
 

regression parameters and here is another thing we have mentioned and which are other

things held fixed.

So, this is a common concept in economics where we say ceteris paribus so other things are

held constant, we are assuming that when other things are not changing then how a change in



x is going to impact y or how y is going to change in response to a change in x only and no

other factors or variables.

(Refer Slide Time: 9:46)

Having said that, in our simple regression beta is the slow parameter in the relationship

between y and x which is equivalent to m in typical linear equations like , is𝑦 = 𝑚𝑥 + 𝑐 α

the intercept parameter also called constant term, the parameters are thus chosen toα 𝑎𝑛𝑑 β

minimize collectively the vertical distance from the data points to the fitted line.

So, when I showed you the scatter plot, I fitted the line through it. It can be any line but then

we do not go for any line. That is why we need a statistical method, a specific method that

gives us the best-fitted line and how do we choose that best-fitted line?

The best-fitted line is chosen by minimizing the collective vertical distance from the data

point to the fitted line. The most common method used to fit a line to the data is known as

ordinary least squares or OLS in short. This approach forms the workhorse of econometric

model estimation.
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So, from now onwards you would use the term OLS, so first of all let me explain OLS

graphically then we will do it mathematically. To obtain the best-fitted line the method of

OLS entails taking each vertical distance from the point to the line squaring it and then

minimizing the total sum of the areas of the squares.

So, this is figure 2, you can see these individual points. Suppose there are only 5 points so in

this scatter plot, there are only 5 points. For the sake of exposition, we consider only 5 points,

and then the vertical distance is considered, it is squared and these squares are then summed

up. The line which gives us the minimum of this sum is the best-fitted line as given by the

method of ordinary least squares or OLS.
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Alternatively, if denotes the actual data point for observation t and denotes the fitted or𝑦
𝑡

𝑦
𝑡

^

predicted value from the regression line for a given value of and is the𝑥
𝑡

𝑦
𝑡

− 𝑦
𝑡

^
= 𝑢

𝑡

^

residual then OLS minimizes the sum of . So, here we show it graphically, again we are𝑢
𝑡

^ 2

measuring x on the horizontal axis and y on the vertical axis and this is my fitted line. Now I

am not having all those 5 scattered points, we only have considered one point, this is my

fitted line and this is my actual observation and this distance is given by , this is .𝑢
𝑡

^
𝑦

𝑡

^

Now here I need to tell you what I have mentioned (refer slide time 13:00). Now when we

actually estimate it, then we will be having something like (refer slide time 13:15), essentially

what we are trying to do is that this random variable is divided into 2 components, one is the

component which is estimated or estimable, the other component is not estimable.

So, if you remember previously, we had discussed the 2 components fixed component and

random component for a variable x the fixed component was its mean, and the variable

component or the random component was the unobserved term or the error term. Now here in

this case we have y where is the estimable or observable component and what remains𝑦
𝑡

^

unobserved?



Whatever remains unobserved is denoted by . Now we are using and not ut, ut is not𝑢
𝑡

^
𝑢

𝑡

^

used here because if you remember u actually correspondence to the population but when we

go for regression analysis most often, we work with the sample, so I have picked up a sample

and that sample gives us an estimate of which is equivalent of .𝑦
𝑡

𝑦
𝑡

^

Now whatever remains is very specific to that sample and we do not call it an error, we call it

to sample residual and we denote it by . So, now note that is not the error term, it is𝑢
𝑡

^
𝑢

𝑡

^

basically a sample residual, there is a difference between these two things, is sample𝑢
𝑡

^

residual so it is very specific to the sample whereas u is specific to or u corresponds to the

population unobserved or error term.

So, you can see that, this is my actual observation, I could estimate corresponding to this

observation only up to this much so basically x explains this much variation in and𝑦
𝑡

corresponding to this value of x, we have this estimated value of and whatever remains𝑦
𝑡

^

unexplained, given this sample is called , fair enough? So, this is what OLS is graphically.𝑢
𝑡

^
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So, in module 3, we observed that the expected value of u is equal to 0 so in the population

the mean value or the population mean is 0 or the average of will also be 0 so when we𝑢
𝑡

^

come to the sample counterpart it is also expected to be 0 because the points above the line



would count as positive values while those below would count as negative values and these

distances will in large part cancel each other out.

Which would mean that one could fit virtually any line to the data so long as the sum of the

distances of the points above the line and some of the distances of the points below the line

were the same so they cancel each other out and the summation of becomes 0.𝑢
𝑡

^

In that case, there would not be a unique solution for their estimated coefficients. In fact, any

fitted line that goes through the mean of the observations that is and would set the sum of𝑥 𝑦

to 0. However, taking the square distances ensures that all deviations that enter the𝑢
𝑡

^
 

calculation are positive and therefore do not cancel out and that leaves us the scope of finding

out a fitted line which basically minimizes these squared distances.

(Refer Slide Time: 17:12)

So, minimizing the sum of square distances is given by this expression, minimizing ( +𝑢
1

^ 2
𝑢

2

^ 2

+…+ ) = . The sum is known as the residual sum of squares or in short RSS, this is𝑢
𝑇

^ 2

𝑡=1

𝑇

∑ 𝑢
𝑡

^ 2

going to be also used in later modules as well. So, this is a very important concept to be

remembered.

Let and denote the estimated values of α and β, such that , that I have just triedα
^

β
^

𝑦
𝑡

^
= α

^
+ β

^
𝑥

𝑡

to explain, this is the estimable part of y therefore minimizing RSS implies minimizing this



sum so we are minimizing the sum of squared deviations of the actual value from the fitted

value and which is equal to , this is also because, if you
𝑡=1

𝑇

∑ (𝑦
𝑡

− 𝑦
𝑡

^
)

2
=

𝑡=1

𝑇

∑ (𝑦
𝑡

− α
^

− β
^

𝑥
𝑡
)

2

see (refer slide time 18:24)

So, of course, (refer slide time 18:34). And we are going to minimize this with respect to α
^

and . So, we choose and in such a manner that this sum of square deviation or sum ofβ
^

α
^

β
^

square residuals, samples residuals is minimized.

(Refer Slide Time: 19:08)

And this is written as the first-order conditions for the OLS estimates are obtained by taking

the first derivative of RSS with respect to and so we are minimizing that expressionα
^

β
^

which we just obtained that is summation ut hat square and then we have plugged in the

values we are minimizing with respect to and .α
^

β
^

So, with respect to that is taking the first derivative with respect to , we have thisα
^

α
^

expression and by taking the first derivative with respect to , we had this expression andβ
^

these are called the two first-order conditions (refer slide time 19:46), these are simple first

derivative, the first with respect to so we have 2 here minus here and the same expressionα
^

and here we have additional xt here.
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And next, we solve for these 2 expressions and what we arrive at is the expression for andα
^

, here I am not getting into the derivations of these expressions as such the derivations areβ
^

available with any standard textbooks including the one that has been referred to here. But the

derivations become easier when we do it in the context of multiple regression analysis and we

use matrix analysis. So, there I will be proving the derivation that how we arrive at the value

of and . For the time being, I do not get into the cumbersome derivation of and .α
^

β
^

α
^

β
^

Setting the first derivatives to 0, the coefficient estimators for the slope and the intercept are

given by are the same expressions, i.e two alternative expressions of where we have.β
^

β
^

. where andβ
^

=
∑(𝑥

𝑡
−𝑥)(𝑦

𝑡
−𝑦)

∑(𝑥
𝑡
−𝑥)

2
α
^

= 𝑦 − β
^

𝑥 𝑥 =
∑𝑥

𝑡

𝑇 𝑦 =
∑𝑦

𝑡

𝑇

.
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Now let us consider an example, in order to explain how the parameters estimates are actually

interpreted or what their uses are. So, in CPI, we consider CPI for agricultural laborers that is

Consumer Price Index for agriculture laborer, one such index available in the Indian context

and index of agriculture production, IAP, from India for 1993 to 2020. Now inflation is

CPI-AL is our dependent variable, denoted by y, this is regressed on IAP which is our

independent variable denoted by x.

So, basically, we are trying to find out the impact of agricultural production on inflation in

CPI for agricultural laborers. Now following the usual OLS procedure we actually arrive at

this equation where we have = 4.06 + 0.02 xt, we are writing here, because we have not𝑦
𝑡

^
𝑦

𝑡

^

mentioned the error term here, so this is the estimable or estimated component of the variable

yt.

The coefficient estimate of 0.02 for β is interpreted as, saying that if x increases by 1 unit, y

will be expected, everything else being equal, to increase by 0.02 units. is interpreted as theα
^

value that will be taken by the dependent variable if the independent variable x took a value

of 0. Further predictions for y can be generated for given values of x, , and .α
^

β
^
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Assume that the following information has been calculated from a regression of y on a single

variable x and a constant over 22 observations, so when I say over 22 observations this

implies that n is equal to 22 or in case we have time-series data then T is equal to 22. So, the

information that is given to us is

, , , ,∑ 𝑥
𝑡
𝑦

𝑡
= 830102 𝑥 = 416. 5 𝑦 = 86. 65 ∑ 𝑥

𝑡
2 = 3919654

RSS = 130.6

The appropriate values of the coefficient estimates are, so we simply plug in these values into

this expression for and arrive at a figure which is 0.35 and similarly by plugging in theβ

values of y bar and beta hat x bar into the expression for , we arrive at a value of minusα

59.12 ( refer slide time 24:20).
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Once we have this information then we can construct the sample regression function which

will be written as = – 59.12 + 0.35 x, there are several measures that help us understand how𝑦
𝑡

^

good or bad these estimates are but they will be taken up in the successive modules but for

the time being we will simply try to explain how we arrive at these different estimates.

So, once I write this = – 59.12 + 0.35 x which is basically the estimated component of the yt,𝑦
𝑡

^

my formal or final regression equation becomes (refer slide time 25:20). Or this is the

sample, at times the sample residual is also denoted by e so we can also write (refer slide time

25:40) so this is my final regression function, where this is my estimable component or

estimated component, and this is the unobserved component or the sample residual.

But as such these estimates, do they, not themselves talk about how good the model is? How

much the variable x is able to explain the variations in y so the goodness of fit and further

interpretations of the parameters, excreta will be taken up in successive modules. So, these

are the references I have followed in order to explain the simple regression, in the next

module also I will be taking up further discussion on simple regression itself. Thank you!


