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Assumptions of Classical Linear Regression

Hello, and this is module 8 of the course on Econometric Modelling.

(Refer Slide Time: 00:32)

Module 8 presents the assumptions of classical linear regression. So once we have talked about

the basic structure of simple regression, the next thing is the assumptions of classical linear

regression. They are a very crucial part of any regression analysis. And basically, a lot of things,

or whether how good a model is, that to a large extent depend on these assumptions of classical

linear regression.



(Refer Slide Time: 01:02)

So first of all we define the classical linear regression model. In the specification

, data for is observed. That is they are observations. But since also𝑦
𝑡

= α + β𝑥
𝑡

+ 𝑢
𝑡

𝑥
𝑡

𝑦
𝑡

depends on it is necessary to be specific about how are generated. So most of the𝑢
𝑡

𝑢
𝑡
𝑠

assumptions are actually made concerning the , the unobserved error, or the disturbance𝑢
𝑡
𝑠

terms. Since s’ are observed that is why we do not need many assumptions about them. Or for𝑥
𝑡

the time being, no assumptions are made concerning their observable counterparts, the estimated

model’s residuals.

Once we obtain the sample from the population then we obtain the residuals. So the assumptions

are all about the error terms primarily and they pertain to the error terms. Whether the

assumptions are fulfilled that is certainly checked by considering the residuals or with the

residuals but assumptions are made about the error terms only and not about the residuals. On the

other hand, very few assumptions are made about the observed part that is . Most assumptions𝑥
𝑡

revolve around the unobserved part.



(Refer Slide Time: 02:37)

So the assumptions of OLS are primarily five. First of all, in the population, the regression model

is linear in the parameters. So linearity, what it implies, why do we need it, has already been

explained. We must have a broad formula or framework of the model as ,𝑦
𝑡

= α + β𝑥
𝑡

+ 𝑢
𝑡

which basically states that the relationship between the variables in terms of the parameters is

linear.

We have a random sample of size T. So the sample should be a random sample, where the sample

consists of the observations on two variables {(xt, yt): t = 1, 2, …, T}. So here we are considering

time series. We can similarly have alternatively t replaced with i. So we can have a random

sample of size N where the observations are (refer slide time 3:50). Then we are dealing with

cross-section data.

The sample outcomes on x namely, {xt, t = 1, …, T}, are not all the same values.

The error u has an expected value of 0 given any value of the explanatory variable. In other

words expected value of u given x is equals to 0 E(u|x) = 0. So, so far we have talked about in

parts that the expected value of u is equal to 0. Now we are saying that the expected value of u



conditional upon the values of x is 0. We are going to deal with this assumption which is a very

crucial one, at length,  in the upcoming slides.

The error u has the same variance given any value of the explanatory variable. So Var (u|x) = σ2.

This is also another very important assumption. The error u has the same variance conditional

upon the values of x. And this is called the assumption of homoskedasticity. So in the later slide

when we deal with this assumption then that will be directly referred to as the assumption of

homoskedasticity.

(Refer Slide Time: 05:16)

So classical linear regression model, alternatively is known as the classical𝑦
𝑡

= α + β𝑥
𝑡

+ 𝑢
𝑡

linear regression model or CLRM given that it fulfills the following assumptions. The first

assumption is expected value of ut given is equal to 0. The variance of ut is equal to sigma

square. Covariance between ui uj equals 0, so that is the different observations of the error term

are actually independent of each other. If you remember we had defined in the very beginning

that independence between two variables implies that their covariances are 0. (refer slide time

5:30)



Now if covariance between is equal to 0 here implies that the observations that the random u𝑢
𝑡
𝑢

𝑗

or error term has, are independent of each other. Covariance between ut and is equal to 0𝑥
𝑡

which is the regressor is unrelated to the error term. Again the error term and the independent

variables, are basically independent of each other. And finally, ut follows a normal distribution

with 0 mean and sigma square as the variance. (refer slide time 6:07)

So this, of course, is partly referred to by the first two assumptions, that it has mean 0 and

variance sigma square. The only thing that is being added here is that is normally distributed.𝑢
𝑡

So, this is the same set of observations or assumptions that are now written in a different way

and this entire thing together is known as the classical linear regression model.

(Refer Slide Time: 07:09)



Now the assumption of E(u) = 0 is actually not very restrictive as long as the intercept isα

included in the equation. Nothing is lost by assuming that the average value of u in the

population is 0 because even if it is not 0 it can be rendered 0 by modifying the model in such a

way that will take care of the non-zero mean of the error term.α

As long as, assumption 1 holds, assumption 4 can be equivalently written as E(xtut) = 0. So

assumption 1 is E(u) = 0. Now you can see that assumption 4 (refer slide time 8:00) So if you

remember an alternative formula for covariance was (refer slide time 8:06). Now that is why we

are saying that the longer the first assumption holds that E(u) = 0, then this assumption can be

written as E(xtut) = 0. Both formulations imply that the regressor is orthogonal, which is

unrelated to the error term.

A slightly stronger alternative to assumption 4 is that are non-stochastic or fixed in repeated𝑥
𝑡

samples. So this actually may also imply that expected value, if is fixed in the repeated sample𝑥
𝑡

then we can consider as non-random. And the moment it becomes non-random we can always𝑥
𝑡

write (refer slide time 9:24), and as a result of which this becomes 0. So, but this is a slightly

stronger alternative to assumption 4. This is a stronger alternative because we are assuming away

the randomness that could be there in .𝑥
𝑡





(Refer Slide Time: 9:49)

This means that there is no sampling variation in , and that its value is determined outside the𝑥
𝑡

model. The fixed-in-repeated-samples scenario is not very realistic in a non-experimental

context. For example, if we collect data on the wage and education of individuals then it makes

little sense to think of choosing the values of education ahead of time and then sampling

individuals with those particular levels of education. Alternatively, suppose I collect data from

100 individuals and on and that is wage and education.𝑦
𝑡

𝑥
𝑡

Then I go to another set of 100 individuals for collecting data on wage and education. But if I

hold constant then this means that I must choose those individuals having the same amount or𝑥
𝑡

the same number of years of education. So that education remains constant, only my keeps on𝑦
𝑡

changing with the change in the individuals.

So, we are holding or independent variable constant in repeated samples which is unrealistic,𝑥
𝑡

and as a result of which, this is, we call a slightly stronger assumption. Random sampling where

individuals are chosen randomly is representative of how most datasets are obtained for

empirical analysis in the Social Sciences. And if we assume repeated, x fixed in repeated



samples then this assumption of random sampling is lost in the case of or in the context of

non-experimental data.

So that was a special case. But in general, what we have obtained is that it the expected value of

multiplied by is actually 0. Alternatively, the covariance between and is 0. And one of𝑢
𝑡

𝑥
𝑡

𝑢
𝑡

𝑥
𝑡

the assumptions of CLRM is that the expected value of is equal to 0.𝑢
𝑡

Now if you remember in the previous module while discussing adjusted R-squared value I had

assumed that (refer slide time 12:21). And then I have proved that why that is 0 while I made an

assumption that (refer slide time 12:31). So, this is actually very similar to this assumption but

this is in the context of population.

And if we work with the sample residual then this assumption, if applicable on the sample

residuals as well, then would mean the same thing, (refer slide time 12:53), which is alternatively

the covariance between the residual and the independent variable is actually 0.

(Refer Slide Time: 13:02)

• Anyway, however assumption 4 measures only linear dependence between u and x. It is

possible for u to be uncorrelated with x while being correlated with functions of x such as

x2. So an alternative and better assumption is E(u|x) = E(u). So, you can see that when we



assume that covariance between u and x actually equals 0 that is specifically having an

expression would imply that the expected value of multiplied by equals to 0. But the𝑢
𝑡

𝑥
𝑡

problem is that if can be correlated with any other functional form of x, for example,𝑢
𝑡

can be related to x2, x3, 1/x, and so on.𝑢
𝑡

So, if we can assume the errors are actually unrelated to any functional form of x then we would

be writing it as the expected value of u given x, that is any value of x, any functional form of x,

we are having that equal to the expected value of u. So in particular for any x we can obtain the

expected value of u for that slice of the population described by the value of x. The crucial

assumption is that the average value of u does not depend on the value of x. So u is actually

mean independent of x.

(Refer Slide Time: 14:44)

So alternatively E(u|x) = E(u) is the conditional distribution of u given any value of x. Here u is

said to be mean independent of x. When E(u|x) = E(u) = 0 we obtain 0 conditional mean

assumption. Once we assume that E(u|x) = 0 and we have random sampling nothing is lost in

derivation by treating the xis as non-random.



So even if I go for a fixed regressor in the repeated sample we do not lose much because we have

already made a sufficiently strong assumption that s are actually independent of any value of x.𝑢
𝑡

So you keep x fixed in the repeated samples, you keep on changing x in repeated samples, which

is in no way going to impact the values of or rather the expected values of .𝑢
𝑡

𝑢
𝑡

Given E(u|x) = 0 the population regression function (PRF) is given by E(y|x) = α + βx, because

we have this additional term E(u|x) = 0. This portion is 0 and that is why this is what is our

population regression function.

(Refer Slide Time: 16:23)

Now we draw this population regression function. So on the right-hand side, you can see a

diagram where for various values of x1, x2, x3 we have a certain value of y. Now you can see

that if in repeated samples, if I collect samples repeatedly and x values are fixed then I can have

for a fixed value of x1, so x, we have taken 3 alternative values of x; x1, x2, x3. And for the

individual value of x, we have different observations of y.



And this is my fitted line which is the population; this is the population regression function. In

the population, this line would fit the data given as (refer slide time 17:12). So, this is the line

that is passing through and these are the points of . (Refer slide time 17:22)𝑦
𝑡

^

Now this tells us how the average or expected value of y changes with x, or a one-unit increase

in x changes the expected value of y by the amount . Also, this implies that for any given valueβ

of x the distribution of y is centered about E(y|x). So this is the distribution of y. For any given

value of x, they are centered around the distribution of y. The population regression function is at

the center and the distribution of y is centered around or about the population regression

function.

(Refer Slide Time: 18:34)

So, its counterpart for the sample is the sample regression function or SRF. Population regression

function is fixed but unknown in the population, and that is why the SRF is estimated as PRF.

So, with samples, we try to estimate the population regression function and which is denoted by

the sample regression function which is .𝑦
𝑡

^
= α

^
+ β

^
𝑥

Now because the SRF is obtained for a given sample of data, our new sample will generate a

different slope and intercept. Every time we change the sample our values are expectedα
^

 𝑎𝑛𝑑 β
^



to change. How good a set of estimates are, whether one can have confidence in the estimates

and whether they are likely to vary much from one sample to another sample within the given

population is given by the standard errors of the estimates.

So, we have a set of estimates given by different samples. So as samples changed my α
^

 𝑎𝑛𝑑 β
^

values changed. That is how if I draw 100 samples, I will be getting 100 estimates of .α
^

 𝑎𝑛𝑑 β
^

And these 100 estimates are never going to be the same because my sample has changed or

whatever be the variations between them that are measured by the sample variance, or variance

of the sample estimates or their standard errors.

So, variance, square root of the variance is generally standard deviation. But when it comes to

the estimators the square root of the variance is known as standard error. So they provide us an

idea of the sampling variability, how much my parameter estimates are varying due to variations

in the sample.

(Refer Slide Time: 20:52)

So next we talk about the last assumption of homoskedasticity. I mentioned that

homoskedasticity implies constant variance of the error term. Homoskedasticity or constant

variance assumption states that error u has the same variance given any value of the explanatory



variable. In other words, Var(u|x) = σ2. You can see that the sigma square is a constant number. It

does not have any subscripts like t, i, or no variable is associated with it. So, it is a constant

number, and as a result of which this refers to the assumption of homoskedasticity which implies

that the error has a constant variance.

The importance of this assumption will be reflected in deriving the properties of OLS estimators

and their variances. Var(u|x) = E(u2|x) – [E(u|x)]2 and E(u|x) = 0, E(u2|x) = σ2, σ2 is also the

unconditional variance of u.

Var (u) = σ2 which implies that here we are deriving the variance of u conditional upon the values

of x, and we are getting σ2. So, this is the conditional variance of u given x. And this is the

unconditional variance of u given x. Both are σ2. σ2 is often called error variance and sigma is the

standard deviation of the error term.

(Refer Slide Time: 22:31)

Now the simple regression model under homoskedasticity, how does it look like? So in the

previous graph, I had shown you how the population regression function looks like. That was the

2D graph where we are measuring y on the vertical axis and x on the horizontal axis. Now if you

also turn this diagram, then it would look very similar to what was shown in the 2D diagram.



Now by considering a three-dimensional where on the third dimension we are measuring the

function of, functional form of y given x. So, this talks about the importance of

homoskedasticity. You can see that for given values of x the values of y are centered on the

population regression function. But their variations around the fitted lines or the population

regression function are constant.

So the variations here, the variations here, the variations here all are the same. All do look very

same, and these are the assumptions or implications of homoskedasticity, as opposed to the

assumption of heteroskedasticity. I will also show you a graph quickly which shows how

heteroskedastic errors would look like.

(Refer Slide Time: 24:09)

Now given the assumption of homoskedasticity, Var (y|x) = Var(u|x) = σ2 because for given

values of x, α, β, and x, all are constant. (refer slide time 24:27)

In that case, my (refer slide time 24:45) 0, because they are now no more random variables, they

are not varying altogether, their variations would be 0. So their variance is 0. So what I am left

with is actually variance of u given x and then there will be covariance terms between u and this

part that is plus beta x. So by now, we know that the covariance between u and x is 0.α



So anyway, this part also becomes 0 (refer slide 25:24). When Var(u|x) depends on x the error

term is said to exhibit heteroskedasticity or non-constant variance, because Var(u|x) = Var(y|x).

Heteroskedasticity is present whenever Var(y|x) is a function of x.

(Refer Slide Time: 25:46)

So, this is the presence of heteroskedasticity graphically. You can see that for individual values

of x these are the values of y in repeated samples, and you can see that the variations are not the

same for different values of xs’. So when we are changing x then the variations in y are actually

not constant. So, the variance of y given x is not constant, and this is the problem of

heteroskedasticity.

Somewhere the variations are different, that is reflected through these graphs that is how they are

distributed. Their distributions are changing. Some are nearer to the mean, some are much

broad-tailed, or fat-tailed as a result of which the variations are changing continuously, and we

do not call it homoskedastic, error terms are homoscedastic, y series, they are heteroskedastic.



(Refer Slide Time: 26:54)

So that brings me to the end of this module. We will continue with the properties of OLS in the

next module. Thank you.


