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Hello. This is the ninth module of the course on Econometric Modeling. So, in the previous

module, we have introduced the methodology under simple regression. And I have also

discussed the assumptions behind OLS.

(Refer Slide Time: 00:44)

Now, this module basically talks about the properties of the OLS estimators. OLS estimators

need to have certain properties which are primarily dependent on the assumptions that we make.

These properties are essential for the OLS estimators because unless and until the assumptions

are not fulfilled the properties will also not be met and accordingly the application of OLS on the

certain problems might not be relevant or the right one. So, from those prospective, the

properties of OLS estimators are important things to discuss.



(Refer Slide Time: 01:23)

First of all, I just mention that if the assumptions of CLRM holds then OLS estimators are known

as the best linear unbiased estimators (BLUE). So, this actually summarizes the properties or the

most important characteristics of OLS estimators. Best here means that the OLS estimator

has minimum variance among the class of linear unbiased estimators. Linearα
^

 𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠 β
^

means are estimators of a linear relationship between x and y.α
^

 𝑎𝑛𝑑 β
^

The concept of linearity has already been discussed at length and again here it implies that only

linear relationships can be estimated using OLS. So are linear estimators of theα
^

 𝑎𝑛𝑑 β
^

relationship between x and y. They are unbiased. This implies that on average the actual values

of will be equal to their true values.α
^

 𝑎𝑛𝑑 β
^



(Refer Slide Time: 02:50)

So first we talk about unbiasedness. I said it is represented by BLUE. So best linear unbiased

estimators are estimators. We begin with first unbiasedness. Linearity has already beenα
^

 𝑎𝑛𝑑 β
^

discussed. So, at the end or next, we will be discussing the best. And there is another property

which is the property of consistency that will be discussed after that.

So, the OLS estimates of are unbiased if and . This essentiallyα
^

 𝑎𝑛𝑑 β
^

𝐸 α
^( ) = α 𝐸(β

^
) = β

implies that in repeated samples from the population if we obtain then their expectedα
^

 𝑎𝑛𝑑 β
^

values will be equal to the population parameters. Thus, on average the estimated values of the

coefficients will be equal to their true values; that is there is no systematic overestimation or

underestimation of the true coefficients.

So, the true coefficients may vary slightly from the actual parameters that are alpha and beta. But

the thing is that there is no systematic overestimation or under estimation. So, whatever little

over-estimation or under estimation could there be that is completely random. The assumption of

zero variance between x and u or expected value u, given x, equals 0 is crucial for unbiasedness

of . We will be proving the unbiasedness ofα
^

 𝑎𝑛𝑑 β
^

α
^

 𝑎𝑛𝑑 β
^



(Refer Slide Time: 04:18)

So first, of all, we consider . So, remember from module 6 that we obtained . That was theβ
^

β
^

formula for that we had obtained. Or this can also be written as (refer slide time 4:37) isβ 
^

because xt minus x bar multiplied by y bar is 0.

So, if I expand this expression, (refer slide time 4:53).

Now this can be written as further, now focusing on only this part, you can see that if I write

(refer slide time 5:30 – 7:30)

(Refer Slide Time: 7:31)



Now it can be shown that (refer slide time 7:33). That is actually, can follow from here itself that

this expression (refer slide time 7:45). The square is just broken. And if I further write it is the

summation (refer slide time 7:50-8:17).

Now if you remember or rather let me show you that we had this expression for where we haveβ

(refer slide time 8:25). I just showed that this expression is equivalent to this expression. So, if I

separate these two entities then what happens is that (refer slide time 8:38 - 8:51).



And then we have (refer slide time 8:53- 9:10). This part will be 0 when we consider an expected

value ahead of it. So, since this is conditional upon the x values, so all these summation minus𝑥
𝑡

x bar whole square and summation minus x bar, all of them become non-random.𝑥
𝑡

And consequently, we have (refer slide time 9:34) and that is equal to summation, as well as

along with the fact that we have covariance between and , these two assumptions taken𝑢
𝑡

𝑥
𝑡

together renders this expression 0. Hence, we have .𝐸(β
^

) = β

Since unbiasedness holds for any outcome on , to , unbiasedness also holds without𝑥
1

𝑥
2

𝑥
𝑛

conditioning on , to . So on, for any outcome on , to implies that for any𝑥
1

𝑥
2

𝑥
𝑛

𝑥
1

𝑥
2

𝑥
𝑛

functional forms of xs’ then biasedness holds. As a result of which we can say that it also holds

without conditioning on any values of x.

(Refer Slide Time: 10:21)

Now talking about the unbiasedness of alpha hat; (refer slide time 10:25 -11:31)

The expected value of the alpha hat is alpha i.e. . That is how we prove the𝐸 α
^( ) = α 

unbiasedness of .α
^

 𝑎𝑛𝑑 β
^



(Refer Slide Time: 11:37)

Now we talk about efficiency. So best implies minimum variance estimators. And this is an

alternative term for best estimator is the most efficient estimators or alternatively, we call an

assumption of efficiency. Any set of regression estimates are specific to the sampleα
^

 𝑎𝑛𝑑 β
^

used in their estimation.

As I am saying that as the sample changes or estimates of changes. In otherα
^

 ,  β
^

α
^

 𝑎𝑛𝑑 β
^

words, if a different sample of data was selected from within the population the data points, that

is xt and yt, will be different leading to different values of the OLS estimates that is .α
^

 𝑎𝑛𝑑 β
^

An estimator of a parameter is said to be efficient if no other estimator has a smallerβ
^

β

variance. Broadly speaking, if the estimator is efficient, it will be minimizing the probability that

it is a long way off from the true value of . So, lower the variance lower is basically on averageβ

the deviations, as an estimator we take from a population parameter .β
^

β

So lesser the variations the better the estimate is, and that is why this is a desirable property, the

property of efficiency, that it is both are supposed to be the minimum varianceα
^

 𝑎𝑛𝑑 β
^

estimators.



(Refer Slide Time: 13:11)

It is thus useful to know whether one can have confidence in the estimates and whether they are

likely to vary much from one sample to another sample within the given population. So, lower

the variations, sample to sample estimates will be also less different. An idea of the sampling

variability and hence of the precision of the estimates can be calculated using only the sample of

data available. This estimate is given by the sampling variances of the OLS estimators

conditional on the sample values , to .𝑥
1

𝑥
2

𝑥
𝑡

(Refer Slide Time: 13:47)



So now we talk about sampling variances, and we also basically derive the sampling variances of

the estimators. Now remember this was the expression of . we arrived at this expression,β
^

β
^

after that taking expected value of we proved that which imply unbiasedness. Nowβ
^

𝐸 β
^( ) = β

we begin from this expression. Note that is just a constant and conditional upon x.β

So, which renders (refers slide time 14:24). So, this component and this entire component both

also are non-random. Also, because the ut are independent random variables across t which is the

assumption 3 or under CLRM that is classical linear regression model, the assumptions that we

made in the previous module, the variance of the sum is the sum of the variances, and which

implies that if all of them are independent then there will be no covariance between the terms of

which variances are considered. And because of which what we obtain is, this is the variance of

.β

(Refer Slide Time: 15:05)

So how do we arrive at the variance of ? If you remember I discussed that (refer slide timeβ

15:22), now which is the sum of individual observations, minus the mean of the variable. Now

this implies that the moment I take a variable out of the variance expression I need to square it.

So, this being non-random is taken out of the variance operator and it has been squared.



So, in the denominator or first we have (refer slide time 15:59). And we are left with the variance

of the numerator expression (refer slide time 16:07). This is also non-random. So, this also

comes out with a square term. And I am left with a variance of only.𝑢
𝑡

We already have discussed the variance of the population error term and that was denoted by

sigma square. It can also be alternatively denoted by sigma square u. So currently going with the

expression of sigma square, we have sigma square here. Now you note that sigma square being

constant actually comes out of this summation operator.

So, when it comes out of the summation operator I have (refer slide time 16:53). So, this shows

that this thing actually cancels out. And that is how we have (refer slide time 17:15)

(Refer Slide Time: 17:24)

Similarly, the variance of can be obtained like this. Now variance of , the derivation isα
^

α
^

slightly longer, so I am not getting into the derivation. All these are available in the standard

textbooks I have referred to. Besides that, the derivation of this will be easier when we get into

multiple regression and then in the matrix form, we can reduce the variance of or ratherα
^

 𝑎𝑛𝑑 β
^

the variance of the constant term more easily.

So, this is the (refer slide time 18:00). And both variances are conditional on the sample values

of to . So that was about efficiency or minimum variance estimators. I had just derived the𝑥
1

𝑥
𝑡



mean variances of the estimators. There are proofs that show that in the class of estimators OLS

estimators are basically the minimum variance. I did not get into the proof that are theα
^

 𝑎𝑛𝑑 β
^

minimum variance estimators.

(Refer Slide Time: 18:47)

Next, I talk about the property which is consistency. This is basically a large sample or

asymptotic property. So as the sample size increases then probably, we observe this property

among the OLS estimators. So, the least square estimators are consistent when (referα
^

 𝑎𝑛𝑑 β
^

slide time 19:02). And similarly, we have an expression for . So, this is how we defineβ

consistency.

Now, what does it imply? This is a technical way of stating that the probability that isα
^

 𝑜𝑟 β
^

more than some arbitrary fixed distance away from its true value tends to 0 as the sample sizeδ

tends to infinity for all positive values of . Alternatively, in the limit, that is for an infiniteδ

number of observations that is as my sample size grows, the probability of the estimator being

different from the true value is 0.

So simply put, as my sample size grows to infinity, that is the sample approaches the population,

the probability that the estimated or estimated will differ from the population andα
^

   β
^

α



population by any positive number is 0. So, this is the property of consistency, which isβ

actually, as you can see a large sample or asymptotic property.

(Refer Slide Time: 20:25)

Now we briefly just talk about the algebraic properties of OLS statistics that is first the sum and

therefore, the sample average of the OLS residuals is 0. So, we have assumed that the expected

value of population error is 0. Its counterpart sample residuals tend to have an average which is

equal to 0, (refer slide time 20:51).

Alternatively, this is, this can be written for (refer slide time 21:02). This is for cross-section, and

this is for time series. Otherwise, there is as such no difference. This follows immediately from

the OLS first-order condition. If you remember the OLS first-order condition was (refer slide

time 21:24).

This is equivalent to . So that is why it directly follows from OLS first-order condition, the𝑢
𝑖

sample covariance between the regressor and the OLS residuals is 0. So, we assume it for the

population counterpart which is one important assumption of the CLRM. And for the sample, we

are considering it to be one of the algebraic properties of the OLS statistics. And this is actually

not an assumption.



This is, ideally the sample counterpart of the population assumption that is the covariance

between the regressor and OLS residuals, is 0. So, (refer slide time 22:18). These two properties

follow immediately from the OLS first-order condition. So, this also follows from the OLS

first-order condition.

This is obtained when I divide or when I take the first derivative of the residual sum of square

with respect to . This follows when we take the first derivative of the residual sum of squareα
^

  

with respect to . So, if you remember this is equal (refer to slide time 22:56). So, these twoβ
^

  

properties follow from the OLS first-order condition.

And the final algebraic property is that the point x bar y bar is always on the OLS regression line.

This has also very simple proof. (Refer slide time 23:23)

Now when I divide both the sides by n then you can see I can write it as (refer slide time 24:13).

So, this shows that when x is at its average for given values of , y will also be at itsα
^

 𝑎𝑛𝑑 β
^

average. So basically for any values of the slope and the constant term; when x is at itsα
^

 𝑎𝑛𝑑 β
^

average, will also be at its average. And since this expression is true that is why we can say 𝑦
^

that the regression line always passes through the averages of both variables.



(Refer Slide Time: 25:04)

So, this brings me to the end of the discussion on the properties of OLS estimators. These are the

books that you can follow for the discussion on the properties of OLS estimators. Thank you.


