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Primitive roots - I 

In the last lecture, we saw the structure of groups, here we will see some examples. 
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So, there are, these are some of the examples, we have the integers, the set of all integers, so 

remember, this denotes the set of all integers minus 1, 0, 1, 2, and so on. So, these are the 

integers, these are the rationals, you may call them rational numbers, these are the reals, real 

numbers, these are the complex numbers, and these are our residue classes modulo n all these 

form groups under addition. And this is something that we have seen already, or if you have 

not seen then maybe you should go back and see these things, these are all groups under 

addition, there are also groups under multiplication.  
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So, these are the group. In general, what we have for all this is that this is the set plus minus 

1, these three these are all the non zero elements in the corresponding sets. And remember, 

these are all the elements i where the GCD of i and n is 1. So, these are all invertible elements 

with respect to the product in the sets Z, Q, R, C, Zn which we have seen earlier which are 

groups under addition. 

And here we have that these corresponding invertible elements form a group under 

multiplication, which also tells you that the elements which we have seen earlier, the 

examples also have 1 more structure than addition, and that is the structure of multiplication 

and this is what takes us to our next concept of a ring. 
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So, we have seen the definition of group in the last lecture, perhaps in a hurried manner but 

we are not going to be able to spend more time on these things. A ring is something which is 

equipped with two binary operation and traditionally, one of them is denoted by plus and the 

other is denoted by product. 

What we require is that the ring or the set R be a group with respect to plus. And there should 

be some more properties with respect to the product. The properties with respect to product 

are, first of all that the set be closed undertaking product, the closure property. We also 

demand that our rings often be associative, there are of course examples of non associative 

rings that people study, but we are going to look at only associativity. We do not ask for the 

identity element to be there and of course, we do not ask for inverse of every element. 

As you see the set of Z does not have the inverse property, the multiplicative inverse of two is 

not there in Z. So, identity element may be there and in that case, we say that our rings are 

rings with identity, identity element may not be there. So, we have two structures plus and 

product, with respect to plus we have that it should be a group, with respect to product we 

demand that there be two properties, closure and associativity. But we are not going to put 

these two structures in isolation, we are going to have a condition which will tell you how 

these two structures can be combined. 

Whenever you have a set and you are putting some structures randomly, you would demand 

that the different structures have something to do with the first structure, only then there is 

some meaning to the whole structure. So, here we demand that the product and addition be 

tied up with a rule which is called distributivity, which says that a into b plus c should be ab 

plus ac. 

So, you have b and c, these are the two elements of the set R; b plus b is yet another element 

of the set r, and you are multiplying to the b plus c by a. So, whether you take the addition 

first and then multiply by a or you take the multiplications first, which is ab and ac, and then 

add, you should get the same answer. This is called the first Distributivity law. 

The second law of distributivity is that, you have a plus b into c should be equal to ac plus bc. 

So, there is a multiplication on the left hand side and there is a multiplication on the right 

hand side also. So, a dot b plus c, this is the multiplication on the left hand side, a plus b dot c 

or a plus b multiplied to c is the multiplication on the right hand side. 



These give you two distributivity laws, this all constitutes a ring. Once again, with respect to 

plus it should be a group, there is one more important condition that it should be an abelian 

group, which is to say that a plus b is always equal to b plus a. So, with respect to plus it 

should be an abelian group, with respect to product there should be two properties, closure 

and associativity and product should distribute over the sum, both on the left hand side as 

well as on the right hand side. 

And the examples that we see here are the examples of commutative rings with identity. If 

you see very carefully, the examples Q, R, and C have the property that every non zero 

element is invertible. Whereas, in Z we have the element 2 here, which is not invertible 

although it is non zero. And here if n is composite, then we get non zero elements which are 

not invertible. 

Composite just means that it is not a prime, whenever we have a prime p dividing n, and p is 

less than n, then p itself is an element in your ring. So, p for instance will give you such an 

example. So for us, what we are going to do is to consider only the groups or rings which are 

finite, we have been looking at these things so far in our lectures and this is what we are 

going to study, so we are going to be dealing with finite groups, finite rings. 

Moreover, we are going to look at commutative rings where the product is also commutative. 

We demand that under addition, there the group should be abelian but here we demand that, 

here we have that the product is also abelian, that is one plus thing. And we also have that, all 

these rings have identity in them. So, what we are looking at are finite commutative rings 

with identity. We are going to require some more concepts of group theory and ring theory. 
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So, we are going to study these groups called the unit groups of Zn, these are denoted by Zn 

cross, we put this cross on the head to signify that we are going to look at elements which are 

invertible with respect to the multiplication. These are the groups, unit groups that we are 

going to study, they are going to be called Un, where U stands for units. We have already 

seen what the cardinality of these groups are going to be. But, after that we want to find the 

exact structure of these groups. So, we want to see how they behave, if you are looking at the 

group structure of these, this will help us in distinguishing various Un. 

Later on, we will see examples of these Un and you will see what I mean by distinguishing 

the Un by the group structure that we put on them. So, once again, I think it would be good if 

you brushed up with your knowledge of basic group theory. And the concepts that you should 

look for are subgroups, cyclic groups and direct product. 

If this seems to be too much for you, then what I suggest is the following. While we go on 

proving the later results, we are going to use some particular concepts in groups. And I will 

of course, have to mention that while I give you the proofs, so when I mention that you note 

all these concepts down and go back and check the definitions; that will help you understand 

these groups in a better way. 

If, of course, there are ways to do these proofs without using the group theory, which is to say 

that we will do the same operations but in more detail, and we will not use the word group, 

cyclic group, direct product or so on, but then our proofs will become very lengthy and such 

proofs are not inspiring. What happens is that there are same methods applied in many proofs 



and therefore, you combine these methods and give them some name. So, the group theory is 

one such method which we are going to use in number theory. 
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It has been our experience that, the primes are well behaved whenever we study any structure 

associated with a general integer n. So, we start by looking at the group of units modulo a 

prime p, we call this to be Up. Of course, the Zn star is Un, so whenever your n is the prime 

number p we will call them Up. What we are going to prove first is that all these groups are 

cyclic, this is to say that there is an element in Zp star whose powers will give you all 

elements. So, there is an element a in Zp star such that a, a square, a cube, a raise to 4 comma 

dot, dot, dot will list all the elements in Up, this is what we want to prove. 

Perhaps, the result is true in more generality, so we make one definition here. An element a in 

general Un, where n need not be a prime, an element a in Un is called a primitive root, 

modulo n. So, we will work with the concept primitive root, but it is understood that 

whenever we are talking about primitive root there is an n which is there in the background, 

so we call this element a to be a primitive root if the order of a is equal to phi n. 

What it means to say is that, a power phi n is equal to 1 in Un and a power m is not 1 for any 

m strictly less than phi m. So, when you list all these elements, a, a square, a cube, and so on, 

you do not hit 1, once you hit 1 after taking power for some times, the next number that you 

will take will again be equal to a.  

If you have that a power 10 is 1, then a power 11 which is a power 10 into a and if a power 

10 is 1, then a power 11 is going to be a. So, you have a, a square, a cube up to a power 9 and 



a power 10 which is 1, then a power 11 will be a and you are going to get the same loop 

again. So, here what we demand is that of course, we are asking for the order to be phi n, but 

not smaller than phi n. 

Therefore, the distinct elements that you get are phi n in number and we also know that 

cardinality of Un is equal to the Euler phi function phi n. So, whenever you have a primitive 

root modulo a number n, you have that the corresponding group is a cyclic group, Un will 

then be a cyclic group. 

So, we are going to be studying these structures of these Un, trying to see whether they are 

cyclic or not by trying to verify whether there exists a primitive element modulo that n or not. 

So to begin with, where we want to prove that our group Up is cyclic, this is to say that each 

Up has a primitive element, this is what we will have to prove. 
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So, the theorem says that the groups Up have primitive elements. So, we observe first of all 

that for a prime p, the cardinality of Up is p minus 1. And we already know that, Up being Zp 

cross is a group under multiplication and if you take any element then, the p minus oneth 

power will always give you 1. The question is, to find an element a for which no smaller 

power gives you 1, this is what we want to show. Furthermore, using group theory, if a, if the 

order, so this is where I am now going to use some concept from group theory which is to 

talk about order of a. 



Furthermore, if the order of a is m, then we also know that m has to divide p minus 1. So, if 

you take all the elements in the group Up and separate them out by their orders, then they 

would be in the sets which are indexed by divisors of p minus 1. 
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So thus, we have Am, which are elements a in Up with the property that the order is m, give 

disjoint union of Am, where you have m dividing p minus 1 is your Up. The disjoint union of 

all these Am, Am cannot have any intersection with a different Al because in Am the order of 

the element is m, in Al the order of the element is going to be. And if you have any element 

in common, it will say that the order of the element is both m and l. But that cannot happen if 

m is not equal to l. So, this is a disjoint union and what we have observed before is that, these 

summation of their cardinalities will give you p minus 1, this is something that is quite nice. 

So, what does it tell you, it tells you that when you take the summation of the cardinalities of 

An. So, for instance here you should check that A1 is only the element 1, just to give you an 

example of 1 Am, this is the only element whose order is 1, there is no other element, which 

to the first power is equal to 1, so 1 is the only element of order 1. 

Then you will look at other divisors of p minus 1 and find the sets Am, it may happen that 

some particular Am are empty, it may happen that you are looking that say it 3 is a divisor of 

p minus 1, but there is no element of order 3. So, in that case A3 will be empty, and then the 

cardinality of A3 will be 0, that is quite okay. But what we certainly have is that every 

element in Up has to have some order dividing p minus 1 therefore, every element of Up is in 

sum An, and clearly Am are subsets of up. 



So, you have the equality that they the disjoint union of Am is Up, which when you take the 

cardinalities gives you that the summation of cardinalities Am for m dividing p minus 1 is p 

minus 1. Now, what we have further is the following thing. So, each note that each Am 

cardinality is bigger than or equal to phi m. 

Why do I say this, this is because when you take a particular M and you take an element of 

order m we are looking at, so this is true whenever Am is non empty. So, start with an 

element a of order m, we are assuming that Am is non empty, so there is an element A of 

order m. Then look at this cyclic subgroup generated by A, so this will be the element a, a 

square, a cube, so on all the way up to a power m minus 1 and then a power m gives you 1. 

So, this is the cyclic subgroup of order m of the group Up. Now, we want to know how many 

generators are there of this cyclic subgroup. So, A is 1 generator but there could be some 

more generators and the basic fact in cyclic groups tells you, that A power i is a generator of 

this cyclic group generated by A, precisely when I is co prime to m. 

So, the group generated by A has phi m generators, these are all distinct elements. So, 

whenever you have an element of order m, you are going to take one of them, it will have phi 

m generators, since they generate the same subgroup, they will also be of order m. Therefore, 

once you have 1 element of order m, you have at least phi m elements of order m. 

So, we have two equations here, our equation number 1 tells you that these cardinalities give 

you p minus 1, but then whenever this is non empty, each such cardinality is bigger than or 

equal to phi m. 
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Let us put these together to get the following nice result. Then, p minus 1 which is 

summation of cardinality Am, where we have that m divides p minus 1, this is also clearly 

summation of the cardinalities Am, where you have that m divides p minus 1 and Am is non 

empty. The only difference between these two sums, the only difference between this and this 

is that here you are taking all the m's dividing p minus 1, whether the Am is empty or not. 

And here taking, you are taking all those m's dividing p minus 1, where A m is non empty. 

So, the only difference between these two is the cardinality of Am which are empty but those 

are anyway 0. So, these two equalities are the same, that tells us that we have this equality 

and this is now bigger than or equal to m dividing p minus 1 phi m of course, with the 

condition that Am is non empty. 

But if I have my Am to be non empty and I take the summation over m dividing p minus 1, I 

get phi, phi of summation of phi m where m dividing p minus 1. Whereas on this side, I also 

have summation over phi m, where m divides p minus 1, this is something that we have 

proved after studying the Euler phi function, that summation phi d where d divides n has to 

be nth. So, what we now have is summation phi m, m dividing p minus 1 is of course bigger 

than or equal to summation phi m, where m divides p minus 1 and Am is non empty. 

We want to say that, these two equations are the same and therefore, we want to say that 

whenever Am is non empty, we should get phi m and nothing more than that. So, here we 

have, when we have this inequality and if you are not getting all phi m, then sum phi m 

should come with more multiplicity. 
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Further, note that each a in Am gives a cyclic subgroup of order m, in particular we get roots 

of X raise to m minus 1 in Zp. But once we have roots of this polynomial, it should 

immediately strike to you that a polynomial of degree m cannot have more than m roots. So, 

what we get is that the cardinality of Am is also less than or equal to phi m. This is because 

once you have 1 element generating a cyclic group of order m in that cyclic subgroup, you 

will have phi m elements of order m. 

If you have any more elements of order m, it should give you at least 1 more element outside 

this cyclic group and then the polynomial x to the m minus 1 will have more than m 

solutions, this is something which cannot happen. So, whenever we have that the cardinality 

of Am is nonzero, you will actually have that the cardinality of Am is exactly equal to phi m. 

And now, we go back to the previous slide which tells us that summation phi m, where m 

divides p minus 1 is p minus 1, which is also summation phi m, where m divides p minus 1, 

but here the condition is that Am is non empty. Since, these two terms are equal you should 

have that Am is non empty for every m dividing p minus 1. Which tells you that, for every m 

for every divisor of p minus 1, there is an element of order m. And therefore, we get that in 

particular Up has primitive root. 

So, we have proved that the group of units modulo p is a cyclic group of order p minus 1. Go 

through this proof, it uses some concepts from basic group theory which are not very difficult 

and you will get familiar with these when you study these things more. In the next lecture, we 



are going to look at structure of Un in general and see whether they are cyclic and if they are 

not cyclic, then we would like to find the exact structure of these unit groups Un. Thank you. 

 


