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Hello, viewers. Welcome to this NPTEL-MOOC course on Mathematical Portfolio Theory. In this
weeks classes what we will do is that we will look at the basics of Probability Theory. So, in the first lecture
today, we will do probability theory in general in both discrete and continuous time, and we will talk about
random variables. This will be followed by a discussion or expectation variance, covariance and correlation
coefficients and then we will talk about two important distributions, namely, the binomial distribution and
the normal distribution. And we will conclude this discussion by the end of the week with a discussion on
linear regression.

(Refer Slide Time: 01:13)

So, we start off our lecture number 1 with basics of probability theory and the first thing we will do is that
we will do probability space and their properties. So, what we will do is that we will first essentially look at
the finite discrete space and then we will look at a general probability space. So, finite discrete probability
space. So, we start off with a definition of what is a finite probability space. So, a finite probability space
is defined as a pair (Ω,P), where the first component omega is a finite non-empty set (called the sample
space) and the second component P is a real valued function, which is defined on the set of all subsets of Ω
and this P is called a probability is called a probability measure on the sample space Ω.
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So, next we will look at a some of the properties of this measure P. So, the probability measure P (which

is defined above) will satisfy the following three properties. So, satisfies the following properties. The first
property it satisfies is that ∀ A ∈ Ω ⊂ Ω, 0 ≤ P(A) ≤ 1. So, here I make a note that all such A which are
subset of omega are henceforth going to be called events. The second property which is P(A) = 1. And the
last property of the probability measure is that if A1, A2, · · · , An are pairwise disjoint events, then

P (∪ni=1Ai) =
n∑

i=1

P(Ai).

So, this brings me to the next definition and this is sort of at a more elementary level than any event A, and
so, I start off with that omega be a finite sample space remember we are talking about the finite probability
distribution. So, let this be a finite sample space then ∀ω ∈ Ω; that means, each element of the sample space
Ω. The event of this singleton event given by this {ω} is called an elementary event.

(Refer Slide Time: 07:10)
So, accordingly, once you have defined what is an elementary event. So, accordingly, we can assign the

probability (remember as an elementary event is also an event). So, we can assign a probability which we
will denote by pω for each elementary event {ω} such that and obviously, it is going to satisfy 0 ≤ pω ≤ 1
and

∑
ω∈Ω pω = 1. So, once we have both this things set up the probability measure and the probability of

relevant event. So, therefore, we can define the probability measure P which you have already introduced
along with the three properties. So, we will define the probability measure P in terms of elementary events
as probability of the elementary event ω, this is pω that we have already introduced. Further on, I can
make another statement that the probability measure P in terms of an event. So, let us go back to a generic
event A will be the sum of probabilities of all the elementary events in A and is accordingly given by
P(A) =

∑
ω∈A pω, where my ω is a member of the event A. So, this brings me naturally to two more

definitions. The first one is so, now, that I have defined all these probabilities for each elementary event. So,
this particular set {pω | ω ∈ Ω}. So, this set is called a probability distribution and please do not confuse
this with distribution function that we will discuss in the later part of this lecture.

(Refer Slide Time: 10:57)
So, the other definition that we have; so, here now once I have all the pω, so, I am now in a position

to define what is known as the probability mass function. So, the real valued function f : Ω → R defined
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as f(ω) = pω. So, if I define this real valued function this is called the probability mass function. So,
continuing with our definition, let us move on to the notion of independence of events. So, accordingly
the collection of events {A1, A2, · · · , An} are said to be independent if any sub collection of this n events.
So, if any sub collection which I will denote as {As1 , As2 , · · · , Ask} of events; so, that means, there are s
number of a members including the possibility of course, of the collection of all events right. So, this means
including the collection of these events this will satisfy the following. So, this sub collection has to satisfy
the following property that

P (As1 ∩ As2 ∩ · · · ∩ Ask) =
k∏

i=1

P(As1)P(As2) · · ·P(Ask).

So, once we have done with this definition of independence we move on to the definition of what is known
as a random variable. So, this is a very important component from the context of the course.
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So, eventually what we will do is that we will talk about random variable. And one of the main random
variable that we look at during the course is going to be the random variable representing the return of any
asset which is in turn going to drive the notion of expected return of an asset. And the risk of an asset
and which will then be extended to talk about what is going to be the expected return of a portfolio and
what is going to be the risk of a particular asset with the return for each of the asset over you know several
time intervals being considered as the random variable. So, accordingly we need to give a great amount of
importance to what is going to be the definition of the random variable, both in case of the finite discrete
probability space and in case of a general probability space. So, accordingly we will now start off with
the notion of random variable. So, random variable is essentially a real valued function and typically we
denote the random variable be X. So, a real valued function X : Ω → R, that is, it is defined on a finite
sample space omega is called a random variable on Ω. So, accordingly, if X is a random variable on a finite
probability space which you denote by (Ω,P, the sample space in the process and the probability measure
and let my finite sample space Ω = {ω1, ω2, · · · , ωn} with X taking a finite number of possible values say
x1, x2, · · · , xm which we put them as a set A = {x1, · · · , xm}. So, remember that X is a random variable
from Ω to R. So, basically for each ω1, · · · , ωn, the random variable X is going to take some value. So,
that means, that the random variable X can take only a finite number of values and here we are looking at a
setting where suppose that they take m number of finite values and those I will designate it by x1, · · · , xm.
So, that means, every each of those x1, · · · , xm is going to be equal to X of one of the ωj’s. So, accordingly
so, once we have set this ω, this set A of the random variables it can take. So, then for each of the xi’s; that
means, this x1, · · · , xm, we have the event and this why I am calling it an event will become clear soon. So,
this X can take any one of the values x1, · · · , xm. So, the event that X = xi this is going to be nothing, but
all those collection of ωj such that X(ωj) = xi. So; that means, all those ωj’s in the sample space which
takes the value xi will be bundled together and represented as the event ofX equal to xi in the chain bracket.
So, this implies that that the event that X ≤ xi, this is going to be all those ωj’s such that X(ωj) ≤ xi,
alright.

(Refer Slide Time: 18:38)
So, just to wind this up I will just say that further the random variable X this describes the probability

measure. So, I am bringing the probability measure into the picture again. So, describes the probability
measure P , but the subscript X on the set A by probability subscript X(xi) (remember this is on the set
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A. So, A is basically now working like some sort of a sample space). And this is going to be nothing, but
probability X = xi and this is called the probability measure probability measure defined by the random
variable X . So, accordingly the function f : A → R, just like we had defined the f earlier to defining
the probability of mass function defined by f(xi) = P (X = xi) is called just like before this time also
we are calling this as the probability mass function of the random variable X . So, here we specify that is
a probability mass function for the random variable X . So, accordingly, we now have our definition, now
once we have this probability measure and the probability mass function for X , so, naturally we have to
talk about independence. So, the collection of random variables X1, · · · , Xn, some n number of random
variables are said to be independent if

P (X1 = x1, · · · , Xn = xn) =
n∏

i=1

P (Xi = xi).

So, what we have done so far is, we have looked at what is a finite probability space and we looked at what is
a probability measure and we talked about random variables. And we talked about independence of events
as well as the independence of event under the random variable X . So, now, we need to move on from a
finite discrete probability space to a general probability space to have a more general idea with a particular
emphasis on a continuous probability space.

(Refer Slide Time: 22:09)
So, accordingly, we now start on the general theory of a probability and we will now move on to two

things; one is the infinite discrete probability space and we will talk about continuous probability space.
So, we begin with a definition. So, as before let omega be a non empty set. Now, in the previous case we
had only talked about a probability space in terms of the sample space ω and the probability measure P .
However, we now need to have an additional term here and accordingly we introduce what is known as the
sigma algebra. So, accordingly we can write that a non-empty collection which are denote by sigma and
this is the collection of subsets of the sample space ω is a σ-algebra if it satisfies the following properties.
The first property is that ω belongs to this Σ. second if we have so, this is our second properties of closure
under countable union. So, if A1, A2, · · · is a sequence of elements of Σ, then

∪∞i=1Ai ∈ Σ.

And, the 3rd property is closure under complement which says that if A ∈ Σ, then Ac ∈ Σ, alright.
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So, this brings us to the definition of a measurable space. So, we will first have to define what is the

measurable space and then we will define what is the probability space just like we had done in the finite
discrete case. So, first definition that is on what is a measurable space. So, a measurable space is the pair
of Ω along with this Σ, where Ω is a non-empty set and Σ is a σ-algebra of subsets of Ω that you have just
defined. So, this takes care of what is a measurable space and now we are in a position to talk about what
is a probability space. So, a probability space is a triple. So, you recollect the earlier probability space only
had Ω and P , but now we have Ω,Σ and P with the non-empty set Ω being the sample space, and Σ being
a σ-algebra of subsets of Ω whose elements are called events and P being a real valued function defined on
Σ and called a probability measure. So, basically the probability space is this triple (Ω,Σ, P ), where my Ω
is the sample space, Σ is a σ-algebra and P is a probability measure. So, now, that we have introduced what
is a probability measure, so, we need to talk about properties similar to the case we had done in case of the
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finite probability space.
(Refer Slide Time: 27:54)

So, here accordingly, so, what are going to be the properties of P ? So, now, the probability measure P
as defined above in case of a general probability space. So, I have to you know specify that. So, as it is
defined above this satisfies the following properties. The first of property is the range. So, as before for all
A, event A in Ω. So, 0 ≤ P (A) ≤ 1. So, the probability lies between 0 and 1 are both inclusive. P (ω) = 1.
So, these two properties are the same as before. However, in the last case since now we can have an infinite
set so, we will have if A1, A2, · · ·, is a sequence of pair wise disjoint events. Then

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai).

So, basically now we can say that a probability space here is given as (Ω,Σ, P ), where we are specified that
the Ω is a non-empty set or the sample space and Σ is a σ-algebra whose properties have been enumerated
the three properties and the probability measure also is has been enumerated in terms of its three properties,
okay. So, let us now come to the topic of distribution function and we will first of all begin with the
motivation of a why one must make use of distribution function and then we will move on to the definition
of distribution function in the paradigm of a continuous probability space. So, accordingly we make the
statement that distribution function, so, we just give the motivation to begin with. See, what happens is that
in case of a finite or discrete a probability space, the probability measure one typically described using the
probability mass function which I will denote by pmf and you would recall that this was f of little omega
was probability of the elementary event omega is not easily extendable to continuous probability.

(Refer Slide Time: 31:36)
And, so, because of this reason, so, accordingly it is for this reason that we introduce the concept of

probability distribution function. So, this natural brings us to the introduction of the definition. So, a real
valued function F : R → R is called a probability distribution a function if it satisfies the following three
enumerated properties. So, the first property is that F is non-decreasing. So, this means that if s < t, this
will imply that F (s) ≤ F (t). The second property is that F is what is known as right-continuous. So, that
is limt→a+ F (t) = F (a), and the last property is that F satisfies limt→−∞ F (t) = 0 and limt→+∞ F (t) = 1.
So, based on this definition with this three property of non-decreasing, right continuous and basically the
limit as t tends to −∞ and +∞.
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We are now in a position to state two results. So, the first result state the following that let P be a
probability measure on R. Then, the function FP to identify with the in probability measure from R → R
define. So, it is a particular function that I am defining in terms of the probability measure P . So, this
function FP : R → R defined as FP (t) is equal to; so, I am defining this as probability of the interval
(−∞, t] is qualifies as a probability distribution function and is called the distribution function of P . And,
the second result that I want to state is the following that let F : R→ R be a distribution function as defined
in part one; so, this be a distribution function then there exist a unique probability measure PF on R whose
distribution function is F . So, that is that if you are given a distribution function then there will exist a
unique probability measure whose distribution function is F . So, that means, when you are given an F (t)
you can find a probability measure PF such that PF ((−∞, t]) = F (t). So, the next thing is that we can now

8



move on to the concept of a density functions.
(Refer Slide Time: 36:50)

So, we have the definition is the following. A probability measure P or equivalently in light of the results
1 and 2, I can talk about a measure P and equivalently a distribution function FP is absolutely continuous if
it has a density function f : R→ R which is non-negative to confirm with the non negativity of probability.
So, which is not negative such that FP (t) =

∫ t

−∞ f(x)dx and so, accordingly P ([a, b]) =
∫ b

a
f(x)dx, alright.

So, now, that you have defined what is the distribution function and what is the probability density function.
So, we are now in a position to start talking about what is the random variable in the context of a continuous
distribution. So, accordingly we revisit random variable in this setup now. So, accordingly so, I will first
talk about so, let (Ω,Σ) be a measurable space, alright. So, a function X : Ω → R that is a real valued
function defined on the sample spaceR is said to be σ measurable if the inverse image of every open interval
is in Σ. Remember that σ was a collection of subsets of Ω. So, what I am saying is that if it turns out that
there are a function X : Ω → R is said to be σ measurable if the inverse image of every open interval. So,
any open interval in R from here if the inverse image of that belongs to Σ, then we say that this function X
is σ measurable. So, in other words, X−1((a, b)) ∈ Σ, okay.

(Refer Slide Time: 40:18)
So, a measurable function; so, in our a measurable function on (Ω,Σ) is also called a random variable.

So, that is your definition of random variable in the continuous time set up. Further, we consider the
probability space (Ω,Σ, P ) and X being a random variable on (Ω,Σ), the measurable space (Ω,Σ). Then
this random variableX defines a distribution function, which will denote by capital FX , and a corresponding
probability measure PX on R just like we had done in case of the finite case, and I will denote this by
FX(t) = PX((−∞, t]) = P (X ≤ t). So, then it brings us to the definition of what is independence
of random variables. So, accordingly we can now talk about the collection of random variables, and in
this case we talk about random variables in the continuous time. So, the collection of random variables
X1, · · · , Xn defined on the measurable space (Ω,Σ) are said to be independent if

P (X1 ≤ t1, · · · , Xn ≤ tn) =
n∏

i=1

P (Xi ≤ ti).

So, just to sum up what we have discuss today we talked about probability space, we talked about a finite
discrete probability space, and then we extended this to general probability space, we talked about what is
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the probability mass function, probability density function at the distribution function. And, we discussed
the definition of the random variables in both the set ups along with that definition of independence in
both the discrete and the continuous time set up. In the next class, we will talk about the moments in the
probability space framework and namely, we will talk about the first two moments, the expectation and the
variance and we will talk about covariance and correlation, coefficients and we will discuss some of the
other properties pertaining to them.

(Refer Slide Time: 43:47)

Thank you for watching.
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