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In the last lecture I introduced the concept of minimal sufficiency and completeness of certain

statistics or again these are also the properties of the family of distributions. 
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Now, before we proceed further  I  will  define a  related concept  that  is  called Boundedly

Complete. Boundedly Complete statistic or Boundedly Complete family of distributions. So,

we  say  that  P  is  equal  to  P  theta  is  a  Boundedly  Complete  family  of  distributions  if

expectation of g x is equal to 0 for all theta and g bounded implies that probability of g x is

equal to 0 is 1 for all theta.

So, the difference from the definition of completeness is that there we wrote any function g.

So, expectation g is equal to 0 for all theta and for any function g if that implied that the

probability that the function is 0 with probability 1 then it was complete. If I impose the

condition that g is bounded then it will imply that probability of g x equal to 0 is 1 then it will



be called a boundedly complete family of distributions. So, we can say that completeness

implies Bounded Completeness. However, the converse is not true.

I will give an example here. Let, X be a random variable with probability mass function given

by P theta X is equal to X is equal to 1 minus theta square theta to the power X for X equal to

0, 1, 2 and so on. And P theta X is equal to minus 1 is equal to theta. Here theta is between 0

to 1. Now, you can easily see that theta plus sigma 1 minus theta square theta to the power X,

X equal to 0 to infinity that is equal to theta plus 1 minus theta square divided by 1 minus

theta because this is infinite geometric series with common ratio theta. So, this cancels out

you get 1.
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So, this is a proper probability distribution. You can say it is a shifted geometric kind of

distribution. Let us show whether it is complete or not. So, consider a function h X then its

expectation can be written as h of minus 1 into theta plus sigma h X into 1 minus theta square

theta to the power X, X equal to 0 to infinity. Now, suppose we equate it to 0 for all theta in

the interval 0 to 1. Now, this term I take to the right hand side and then we divide by 1 minus

theta square. So, it is reducing to h X into theta to the power X. It is equal to minus h of

minus 1 theta divided by 1 minus theta square this is for all theta in the interval 0 to 1.

Further, this 1 minus theta square in the denominator. So, if I bring it to the numerator it

becomes 1 minus theta to the power minus 2 and I can expand because theta is in the interval



0 to 1. So, this we can write as minus h of minus 1 into theta and this expansion can be

written as 1 plus 2 theta plus 3 theta square and so on. Now, if I consider these 2 terms the

left hand side is a power series in theta and the right hand side is also a power series in theta.

So, if I equate the terms we get equating the coefficients of the power series on both the sides.

We get h X is equal to minus X into h of minus 1 for X equal to 0, 1, 2 and so on.

Now, if h of minus 1 is bounded then h of minus 1 must be 0 because if h of minus 1 is not 0

then this function is unbounded because it will be X into some constant. So, for boundedness

the only possibilities that h of minus 1 is 0 which will imply h of X is equal to 0 for all X.

That means probability of h X is equal to 0 will be 1 for all theta in the interval 0 to 1. So, h is

boundedly complete not X is boundedly complete.

But if h of minus 1 is not 0 then h of X is also not 0 this implies probability that h X is 0

cannot be 1. So, h is not complete because expectation of h X is 0 but, h X will not be 0 with

probability 1. So, this is an example of a boundedly complete family of distributions which is

not complete.
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Now, there  are  relationships  between sufficiency and completeness  also.  Also,  there  is  a

general way of determining complete statistics for example, if the distributions are in the

exponential  family  I  have  already  given  the  example  of  binomial  distribution,  poisson

distribution.



So, in the poisson distribution family is complete. If I consider sufficient statistics or minimal

sufficient  statistics  that  is  turning  out  to  be  sigma  X  i  which  is  again  having  poisson

distribution with parameter n lambda. So, if poisson lambda is complete poisson n lambda is

also complete. So, sigma X i is complete. So, we can conclude that in most of the standard

examples that we have discussed the corresponding sufficient or minimal sufficient statistics

will  also be  complete.  Let  me just  take  the  example  of  non regular  family. Say, let  me

consider say X 1, X 2, X n following uniform 0 theta distribution.

Then  X  n  is  minimal  sufficient.  We prove  that  X  n  is  complete.  Let  us  consider  the

distribution of X n, that is n X to the power n minus 1 by theta to the power N 0 less than X

less than theta, it is 0 elsewhere. So, if I consider expectation of say g of X n is equal to 0 for

all theta, then this statement is equivalent to g X n X to the power n minus 1 by theta to the

power n d X from 0 to theta it equal to 0 for all theta. Now, this is equivalent to saying a

function of x over all the intervals 0 to theta is integrated to 0. Again, by the (( )) integration

theory it implies that g star must be 0 almost everywhere. This g star function I have taken to

be this.

So, this implies that g X is equal to 0 almost everywhere on 0 to infinity this implies that

probability that g X n is equal to 0 is 1 for all theta. So, X n is a complete statistic. So, there is

a  relation  between  minimal  sufficiency  and  complete  sufficiency.  In  fact  we  have  the

following theorem.
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If T x is complete and sufficient then T x is minimal sufficient. However, the converse of the

above statement is not true that is we may have example of say minimal sufficient statistic

which is not complete. Let us take say X 1, X 2, X M, a random sample from normal with

mean mu and variance sigma 1 square and y 1, y 2, y N this is another independent sample

from normal with mean mu and variance sigma 2 square. Here, sigma 1 square and sigma 2

square are different.

Let us consider the joint distribution of X 1, X 2, x M and y 1, y 2, y N. The joint P d f of X

1, X 2, X M, y 1, y 2, y N that is equal to 1 by root 2 pi to the power M plus N sigma 1 to the

power M sigma 2 to the power N, E to the power minus 1 by 2 sigma 1 square sigma X i

minus mu square minus 1 by 2 sigma 2 square sigma y j minus mu square. This we can

simplify as 1 by root 2 pi to the power M plus N sigma 1 to the power M, sigma 2 to the

power N, E to the power minus sigma X i square by 2 sigma 1 square plus M mu x bar by

sigma 1 square minus M mu square by 2 sigma 1 square minus sigma y j square by 2 sigma 2

square plus N mu y bar by sigma 2 square minus N mu square by 2 sigma 2 square.

So, if we apply the ratio by writing down this joint P d f at 2 points x y and say X prime y

prime then these terms will get canceled out and we will be left with sigma X i square minus

sigma X i  prime square into parametric  function,  X bar minus y bar into the parametric

function, X bar minus X bar prime, y bar minus y bar prime and sigma y j square minus

sigma y j prime square. So, if we write down this function here. 
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Say, f X y mu sigma 1 square sigma 2 square divided by say f X prime y prime mu sigma 1

square sigma 2 square then that is equal to E to the power 1 by 2 sigma 1 square sigma X i

prime square minus sigma X i square plus 1 by 2 sigma 2 square sigma y j prime square

minus sigma y j square.

Then plus M mu or mu by sigma 1 square, sigma X i minus sigma X i prime plus mu by

sigma 2 square sigma y j minus sigma y j prime. So, this is independent of mu sigma 1 square

and sigma 2 square if and only if we have sigma X I, sigma X i square, sigma y i, sigma y i

square is equal to sigma X i prime, sigma X i prime square, sigma y i y j prime and sigma y j

prime square. So, T is equal to sigma X i, sigma X i square, sigma y j, sigma y j square is

minimal sufficient. However, T is not complete.

Let us consider g T as a sigma X i by M minus sigma y j by n then expectation of g T is equal

to 0 for all mu sigma 1 square, sigma 2 square because expectation of X i and expectation of

y j is mu so it is M mu by M minus M mu by n but, g T is not 0. Actually, probability that g T

is not 0 is 1 probability that g T is equal to 0 is actually 0 so T is not complete so this is an

example of a minimal sufficient statistic which is not complete.

To determine complete statistics in general settings are to prove the completeness in general

settings of exponential family 1 only needs to check the kind of parameter space that we are

having. So, we have the following general theorem 
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Which I will state without proof for the proof one can look at the book of Lehmann testing of

hypothesis book. So, let x be a random vector with probability distribution in an exponential

family say we write which in the form c theta E to the power sigma theta E T x into H x.

So, here c theta is a function of parameter h x is function free from parameter and parameter

is occurring in the exponent here theta is equal to theta 1 theta 2 theta k that is it is belonging

to r k. Let me say it belongs to omega and omega is a subset of r k. Let us write T as T 1 x

and so on T k x then T is complete provided omega contains a k dimensional rectangle. If you

look at the previous example here. 
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This is actually a 3 parameter distribution here. Here what we are getting is 1 by 2 sigma 1

square or you can say 1 by sigma 1 square, mu by sigma 1 square then 1 by sigma 2 square

and mu by sigma 2 square.

However, they are not independent. Actually, the parameter is 4 dimensional if we write theta

1 is equal to say minus 1 by 2 sigma 1 square, theta 2 as equal to mu by sigma 1 square, theta

3 as equal to say minus 1 by 2 sigma 2 square and theta 4 is equal to say N say mu by sigma 2

square.  Then  this  is  a  4  dimensional  parameter  but,  there  is  dependency  upon  that  for

example, given theta 1, theta 2 and theta 3 we can determine theta 4. So, the parameter space

does not contain a 4 dimensional rectangle.



And that is why we could actually show that this is not complete T was not complete here.

We have seen the application of sufficiency in estimation problems. We saw that if we have

an unbiased estimator we can certainly improve upon it by conditioning upon the sufficient

statistics,  the  result  was  known as  the  Rao-Blackwell  Theorem.  Now, if  we  couple  this

concept with the completeness we get a stronger result. In fact we can reduce the problem to

determination of the uniformly minimum variance unbiased estimator.
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The resulting result which is actually associated with the name of Lehmann-Scheffe. So, I

will couple the 2 results Rao-Blackwell and Lehmann-Scheffe and we call it Rao-Blackwell-

Lehmann-Scheffe theorem. Let X have probability distribution P theta theta belonging to say

omega and T X be complete and sufficient. Then h T is U M V U E of expectation of h T. Let

us call it say g of theta that means for any estimable unbiased estimable function g theta if I

have an unbiased estimator which is dependent upon the complete sufficient statistic then that

will be actually U M V U E. Let us look at the proof of this.

Let say d X be an unbiased estimator of g theta then u will have consider expectation of d X

given T. Let me denote it by say d star. Since, T is sufficient d star T will be free from theta

because  the  conditional  distribution  of  X given  T is  independent  of  theta  therefore,  this

expectation will not contain any term of theta and we can call it T star T and so d star T is d

star T is suppose I write capital T here this is an estimator. Now, we have already seen that by



Rao-Blackwell theorem d star T is also unbiased for g theta and variance of d star was less

than or equal to the variance of d T.

(Refer Slide Time: 24:38)

Now, consider expectation of h T minus d star T then that is 0 because both of these are

unbiased for g theta. Now, this is a function of T and T is complete. Since, T is complete the

above statement implies that h T must be equal to d star T with probability 1. Essentially, it

proves that h T is a unique unbiased estimator of g theta. So, h T is U M V U E. Actually g

star d star is also U M V U E but, these 2 U M V U E differ only on a set of measure 0.

Now, this result is extremely useful for finding out the U M V U E ’s. We have seen actually

in the earlier method of lower bounds that many times whatever best unbiased estimator we

are able to think of the variance of that is not attaining the lower bound whether we are

considering the Frechet-Rao-Cramer lower bound, Bhattacharya lower bound or Chapman-

Robbins-Kiefer lower bound etcetera.

In many of the cases we saw that the variance of the unbiased estimator was bigger than the

lower bound the corresponding lower bound. However, this method when we are considering

a function of complete and sufficient statistic it immediately proves that the corresponding

estimator will become uniformly minimum variance unbiased estimator. Essentially what is

doing it will actually show that the corresponding unbiased estimator is actually the only



unbiased estimator available except of course, on a set of probability 0. So, since it is unique

certainly it is U M V U E.

So, if we go back to various problems where the lower bounds was not attained for example,

if you consider normal mu sigma square where mu is unknown and we were considering the

estimation of sigma square. So, let us consider say X 1, X 2, X n follows normal mu sigma

square, mu and sigma square are unknown and we have this S square as 1 by n minus 1 sigma

X i minus X bar whole square. This is unbiased for sigma square. Now, in this problem X bar

and S square is complete and sufficient. So, S square is U M V U E. We had noticed here that

in  this  particular  case the lower bound that  was attained by the method of  Frechet-Rao-

Cramer it was lower than the variance of S square.

The variance of square was 2 sigma to the power 4 by n minus 1 and the lower bound was 2

sigma to the power 4 by n but, here in this method U M V U E proving is easy because we are

just looking at the expectation of S square since is equal and it is a function of the complete

sufficient statistics.
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So, it becomes U M V U E. Let us take other related examples also. X 1, X 2, X n following

uniform 0 theta. Here, we have shown that X n is complete and sufficient.

Now, if we look at expectation of X n that is X into n X to the power n minus 1 by theta to

the power n X then this is equal to n by n plus 1 theta that means n plus 1 by n X n is



unbiased  for  theta.  Now, this  is  a  function  of  complete  sufficient  statistics  so  by  Rao-

Blackwell-Lehmann-Scheffe theorem we conclude that n plus 1 by n X n this is U M V U E

for theta. We have also seen the standard distributions like poisson distribution where for

lambda we are able to derive the U M V U E but, for lambda square we are not able to derive

or if I consider e to the power minus lambda then we are not able to derive the U M V U E.

But using this method we can derive. Let me explain this here. Let us consider say X 1, X 2,

X n following poisson lambda distribution lambda positive. Now, here X bar or you can say

sigma X i this is complete and sufficient. Suppose, I am considering g lambda is equal to e to

the power minus lambda which I had explained actually this is probability of X 1 is equal to 0

that is the proportion of 0 occurrences in a given problem. Let us define say d X 1 is equal to

1 if X 1 is 0 and it is equal to 0 if X 1 is not equal to 0.
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Then if I consider here expectation of d X 1 then that is equal to probability of X 1 is equal to

0 that it it is equal to E to the power minus lambda. So, d X 1 is unbiased for g lambda.

However, this is not U M V U E because this is not a function of the complete sufficient

statistic. So, if I apply the Rao-Blackwell-Lehmann-Scheffe theorem 
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If I consider Rao-Blackwell-Lehmann-Scheffe theorem, if I consider expectation of d X 1

given T sigma x i or x square we can write then this is U M V U E of g lambda. So, the only

thing remaining is that determination of this function.

We can determine it easily. Let us denote it by h T expectation of say d X 1 given T is equal

to small t then this is equal to expectation of now d X 1 takes only 2 values 1 and 0. So, it is

equal to probability of X 1 is equal to 0 given T is equal to t because d X 1 is equal to 0 then

probability of x 1 is not equal to 0 but, value 0 multiplied then that value will not matter, x 1

not equal to 0 given T is equal to t. So, this term is vanishing. So, we need to only determine

this conditional probability that is probability X 1 is equal to 0, T is equal to t divided by

probability T is equal to t.

That is equal to probability X 1 is equal to 0. Now, this T is nothing but, sigma X i, i is equal

to 1 to N. If I say X 1 is equal to 0 then we can say sigma of X i from 2 to N is also equal to

T. Now, here you notice that the sum of independent poissons is poisson. So, the distribution

of T will be poisson n lambda and distribution of sigma X I, i is equal to 2 to N that will be

poisson n minus 1 lambda. So, if we use this here X 1 and sigma X i from 2 to N this will be

independent  so  this  can  be  written  as  the  product  of  this  probability.  So,  it  becomes

probability of X 1 equal to 0 into probability of sigma X i from 2 to N is equal to T divided

by probability T is equal to t.



So, that is equal to E to the power minus lambda, lambda to the power 0. So, that term will

not come. Then this is following poisson n minus 1 lambda so it is becoming e to the power

minus n minus 1 lambda, n minus 1 lambda to the power t divided by t factorial and then

probability T is equal to t. So, that is e to the power minus n lambda, n lambda to the power T

into t factorial. So, these terms get cancel out and we are left with n minus 1 by n t. So, h T is

equal to 1 minus 1 by n to the power T this is U M V U E of E to the power minus lambda.

So, this Rao-Blackwell-Lehmann-Scheffe theorem is extremely useful to determine the U M

V U E for various functions where the method of lower bound is not applicable. Before, we

discuss other examples let me also give some further relationship between the completeness

and independence etcetera. Now, there is a famous result called Basu’s theorem where we

consier certain statistics whose distribution does not depend upon the parameter. 
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So, I define what is known as Ancillary statistic. So, a statistic let me call it V of X is said to

be ancillary if the distribution of ancillary for say parameter theta if the distribution is V X

does not depend on theta.

For example, if I consider say X 1, X 2, X n follows normal mu 1 and I consider T as say X 2

minus X 1, X 3 minus x 1 and so on x n minus x 1. Then the distribution of this does not

depend on mu. So, T is ancillary here. Let me call it V here because T we use for the sigma X

i here or X bar. Then we have the following theorem called Basu’s theorem named after D



Basu. Let T be sufficient and boundedly complete.  So,  if  it  is  complete or automatically

bounded completeness will be true.

Let V X be ancillary for theta. Then T X and V X are independently distributed. Let us look

at  the  proof  of  this.  So,  let  a  be  any set  in  the  space  of  values  of  V. So,  if  I  consider

probability  of  V  X  belonging  to  a  then  this  will  be  independent  of  theta  because  the

distribution of V X does not depend upon theta so this is going to be independent of theta. So,

if we want to write a statement like this T theta V X belonging to a this is some constants say

alpha, alpha is a constant.
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Now, let us consider a function say W of T that is equal to probability of V X belonging to A

given T. Now, this is a probability so W is a bounded function, W is a bounded function.

Now, let us consider expectation of W T minus alpha. Now, what this is going to be? This is

expectation of probability V X belonging to a given T. Now, this expectation is over what?

This conditional probability is a function of T, so this is expectation over T minus alpha.

Now, this will become nothing but, probability of V X belonging to A minus alpha which is

actually equal to 0 for all theta.

But T is boundedly complete, T is boundedly complete. So, this implies that probability that

W T is equal to alpha must be 1 but, what is this statement? This statement is equivalent to

saying probability of V X belonging to A given T is equal to alpha. What was alpha? Alpha



was probability V X belonging to A that means the conditional probability of V given T is

same  as  unconditional  probability  of  V,  this  is  with  probability  1.  So,  T  and  V  are

independently distributed.
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Let us look at 1 or 2 applications of this here. So, if we consider this problem here X 1, X 2,

X n follows normal mu 1 and here T is equal to sigma X i this is complete and sufficient. So,

this is complete and sufficient and X 2 minus X 1, X 3 minus X 1 and X n minus X 1 has a

distribution which does not depend upon mu, then T and V will be independently distributed

and of course, this is all also a well known result in the normal distribution theory that sigma

X i and S square, X bar and S square are independently distributed.

So that is up a the proof is actually through this only that we firstly show that X bar and X 2

minus X 1, X 3 minus X 1 etcetera are independent and therefore, since S square is directly a

function of this therefore, X bar and S square are also independent. So, that is confirmed here 
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Let us generalize this example to normal mu sigma square. So, let us consider say X 1, X 2,

X n follows normal mu sigma square. So, let us take say sigma square is equal to sigma

naught square be known, if that is so then X bar is complete and sufficient.

And at the same time if we consider sigma X i minus X bar whole square this is ancillary for

mu. Therefore, X bar and sigma X i minus X bar whole square are independent. Now, if we

are writing this statement here. This sigma naught square does not play a role here because

this was arbitrarily fixed so here if we say it for all sigma naught square that means X bar and

sigma X i minus X bar whole square are independent in general here. 
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So, we can say here since sigma naught square is arbitrary we can say that X bar and sigma X

i minus X bar whole square r independent for normal mu sigma square case here.

Let me take another application here. Suppose, I fix mu is equal to mu naught if we take this

then sigma X i minus mu naught square is complete and sufficient. Let V be of the form say

X bar minus mu naught divided by square root sigma X i minus mu naught square. You can

see here if I divide by sigma here in the numerator and the denominator then the distribution

will become free from the parameters here, this is ancillary here.

So, sigma X i minus mu naught square and V they are independent here. Let me consider

some  further  applications  of  the  minimum  variance  unbiased  estimation.  Let  X  have

hypergeometric distribution, that is the probability mass function is given by M c X n minus

M c n minus X divided by n c N. Here X is from 0, 1 to N and of course, subject to the

restrictions that X is also less than or equal to M and n minus X is less than or equal to N

minus m.

Here N is assume to be known and M is unknown. So, we consider estimation of M. 
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So, if we write down the distribution it is already in the factorizable form. So, X is certainly

sufficient. So, X is sufficient here. Let us look at the completeness. To check completeness of

X let us take expectation of a function of X is equal to 0, then that is equivalent to saying g X

M c X n minus M c n minus X divided by n c N is equal to 0 for X equal to 0 to N subject to

those conditions here for all m.

If I take M is equal to 0 here then this will give me g 0 is equal to 0, if I take M is equal to 1

and that will give me g 0 n minus 1 c N plus g 1 n minus 1 c n minus 1. Now, g 0 is 0 that

means g 1 is also 0. So, by induction we can prove that it can be shown that M is that X is

complete.  Now, what  is  expectation of  X that  is  equal  to  n by N into M so that  means

expectation of N by n x is equal to M so X is complete and sufficient and this is an unbiased

estimator of M.
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So, we conclude that by Rao-Blackwell-Lehmann-Scheffe theorem we conclude that N by n x

is U M V U E of M. Let me give 1 more application. Let us consider say a random sample

from a binomial distribution with parameter say k and theta where k is known. Let us define a

function say g theta is equal to probability of 1 that is k theta into 1 minus theta to the power

k minus 1. We want the unbiased estimator of this. Let us define a function say h X 1 is equal

to 1, if X 1 is equal to 1, it is 0 if X 1 is not equal to 1.

Then  expectation  of  h  X  1  is  equal  to  g  theta.  So  by  Rao-Blackwell-Lehmann-Scheffe

theorem psi T that is here T is equal to sigma X i is complete and sufficient. So, that is equal

to expectation of h X 1 given T this is U M V U E of g theta. So, we can consider here

evaluation of this psi T function that will be equal to probability of X 1 is equal to 1 given

sigma X i is equal to T that is equal to probability of X 1 is equal to 1 sigma X i from 2 to N

is equal to T minus 1 divided by probability sigma X i 1 to n is equal to t.

Now, sigma X i will follow binomial n k theta sigma X i from 2 to n will follow binomial n

minus 1 k theta. So, if we substitute these values here probability of X 1 is equal to 1 into

probability of sigma X i 2 to N is equal to T minus 1, probability sigma X i is equal to T 1 to

N, then that is equal to k theta into 1 minus theta to the power k minus 1 and then this is equal

to k into n minus 1 c T minus 1 theta to the power T minus 1, 1 minus theta to the power k

into n minus 1 minus T minus 1 divided by k n c T theta to the power T into 1 minus theta to

the power k n minus t.



The terms which contain theta they get canceled out here and we are left with k into n minus

1 factorial divided by k n factorial into k T into k n minus t factorial divided by k n minus T

minus k plus 1 factorial, So, if we consider this function here that is the U M V U E of g theta

here. Let me end with 1 example in the exponential distribution.
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Suppose we have a random sample from exponential distribution with parameter say lambda.

And we are looking at the reliability function R t is equal to e to the power minus lambda T,

we want the U M V U E of this. So, define the function g X 1 is equal to 1 if X 1 is greater

than T it is equal to 0, if X 1 is less than or equal to T. So, expectation of g X 1 is equal to e to

the power minus lambda T and expectation of g X 1 given T that is equal to say d of T is U M

V U E of R t that is for the reliability function the minimum variance unbiased estimator will

turn out to be the conditional expectation of g X 1 given t.

So if I evaluate this that is nothing but, probability of X 1 greater than t given T is equal to t

where T is equal to sigma X i here. Now, here we need the conditional distribution of X 1

given T. In the discrete case we are able to write down it as the joint probability divide by the

probability  of  this  term but,  in  the  case  of  continuous  distribution  we cannot  write  that

statement. So, what we do we divide derive the conditional distribution of X 1 given T and

this distribution can be easily derived.



The conditional distribution of the conditional distribution of X 1 given T is equal to t is

derived as f of X 1 given t is equal to t minus X 1 to the power n minus 2 divided by T to the

power n minus 1 into n minus 1, 0 less than X 1 less than t. It is equal to 0 elsewhere. So, this

probability of X 1 greater than t then turns out to be simply 1 minus minimum of X 1 greater

than y so that is equal to the conditional probability of X 1 greater than T given T is equal to t

turns out to be simply minimum of T and so there is a confusion here. I should have used a

different notation here X 1 here so this turns out to be, there is a problem. Let us use a

different notation y here and this is y, this is y is equal to say small y, so this is y here y.

So, then this will be equal to minimum of y and t divided by y to the power n minus 1. So, we

conclude that 1 minus minimum of y and t divided by y to the power n minus 1 is U M V U E

of reliability function in the case of exponential distribution. So, we have seen here today that

the  properties  of  sufficiency  and  completeness  are  extremely  helpful  in  determining  the

problem of or solving the problem of minimum variance unbiased estimation. Essentially, it

reduces the problem to find out  the unique unbiased estimator  which can be then easily

determined.

In the next class, we consider the different approaches to the estimation. There is a approach

of invariance and then and minimax estimation. I will be introducing in the next classes.


