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Invariance – II

So, let us continue the discussion on the equivariant estimators and maximal invariance, I had

considered one example of the finding out maximal invariant let me take one or two more

examples also.

(Refer Slide Time: 00:35)

So, let us consider say again x as n dimensional Euclidean space and G is the group of scale

transformations. So, I am considering for n points then g c of x is equal to c x 1 c x 2 c x n,

where c is any positive real number. In this case T x is equal to x 2 by x 1 and so on x n by x

1 this is a maximal invariant.Once again you can see that as x 2 goes to c x 2, x 1 goes to c x

1 so, this ratio becomes same as x 2 by x 1 x n goes to c x n, x 1 goes to c x n so, the ratio

goes to x n by x 1 etcetera. So, these are all this is an invariant function.So, clearly T x is



invariant and also if I take two points T x is equal to T y, then what I get x 2 by x 1 is equal to

y 2 by y 1, x 3 by x 1 is equal to say y 3 by y 1 and soon x n by x 1 is equal to say y n by y n.

Then this implies x 2 is equal to y 2 x 1 by y 1 x 3 by x 3 is equal to say y 3 into x 1 by y 1

and so on x n is equal to y n into x 1 by y 1 so this is c. So, this implies that x is equal to g c

of y where we have chosen c to be x 1 by y 1 so, T is maximal invariant.Let us take another

example say x is  equal to say R n and G is  the group of all  n factorial  permutations of

coordinates of x. Then T x is equal to order statistics x 1 x 2 x n this is maximal invariant.

(No  audio  from:  03:30  to  03:39)  Now, let  us  look  at  the  importance  of  invariance  in

determining the best as I mentioned earlier that we want to use this concept to reduce the

class of available estimators. And in that reduced class if it is possible to find the best one

then we are having some sort of optimal estimator in that class.

Now, when we start the reduction then we have to find out the equivariant estimator we have

seen one example here in the binomial case, the condition that we are getting here is that we

should have T of n minus x is equal to 1 minus T of x in the case of uniformed distribution

we got the form of the equivariant estimator as a multiple of x.Now, if you take multiple of x

then you realize here for example, 2 x is unbiased it is also the method of moments estimator

for  this  problem.  But  suppose  I  have  n  observations  x  1  x  2  x  n  in  that  case  if  I

straightforwardly apply the concept of invariance then the estimator will  turn out to be a

function of it will turn to be x 1 into a function of x 2 by x 1 x 3 by x 1 and soon.

On the other hand we had seen that the maximum likelihood estimator is x n, the complete

sufficient  statistics  is  x  n.  Now, in  that  case  why not  we restrict  attention  firstly  to  the

sufficient statistics and then we apply the concept of invariance.



(Refer Slide Time: 05:36)

So, let me justify this thing sufficiency and invariance. So, there is a natural question that

when the  two criteria  of  sufficiency and  invariance  are  there  then  which  one  should  be

applied first, can the applications of these in any order give the same answer or that will lead

to the same solution etcetera? The general answer to these questions have been attempted by

many researchers and under certain conditions certain results have been obtained. But we will

follow a practical approach here, in most of the estimation problems we usually deal with

convex loss functions.If the loss function is convex, the class of estimator which is based on

the sufficient statistics supersites or you can say given any estimator, which is not based on

the sufficient statistics.

We can find an estimator which is better than that using the rao black well theorem.Therefore,

we can restrict attention to the class of estimators which are based on sufficient statistics.

Now, if we apply the invariance on this class of estimators then we are considering much

smaller class so,  we will  follow this  approach here.So, we usually apply the principle of

sufficiency first and then apply the principle of so, let us see in certain problems when the

group  of  transformations  is  transitive  we  may  actually  end  up  with  getting  the  best

equivariant estimator.

So, let us start with the uniformed distribution problem. (No audio from: 07:58 to 08:11) Let

me firstly consider this x following uniform 0 theta problem which I introduced earlier. We

got the form of the group was a scale group that is g c g c x is equal to c x where c is positive



here theta is positive.The form of a scale equivariant estimator is given by let me use the term

d delta k that is equal to k times X.We want to minimize the risk of delta k with respect to k

so, let us consider the risk of delta k that is equal to expectation of k X minus theta square

sorry k X by theta minus 1 square. Let us substitute say T is equal to X by theta, then what is

the distribution of T that is uniform 0 1.

So, we can write it as expectation of k T minus 1 square that means the risk function of the

best of the equivarent estimator is independent of the parameter.Now, this is true because this

is scale group of transformations is a transitive group. Because if I consider any two points

theta 1 and theta 2 on the positive real line then, they can be reached from the other one.For

example, I take theta is equal to 2 and theta 1 is equal to 2 and theta 2 is equal to 3 then if I

choose c  is  equal  to  3 by 2 then 3 by 2 times 2 is  equal  to  3 that  means there  exist  a

transformation so that I can reach theta 2 from theta 1.Therefore, the risk function will be

constant and therefore, we can find out the best choice here.

(Refer Slide Time: 11:27)

So,the this is now naturally a convex function of k and so, the minimum occurs when del R

by del k is equal to 0.Now, this del R by del k is equal to 0 you can calculate del R by del k

that will give us twice expectation k T minus 1 into T is equal to 0 this means k is equal to

expectation of T by expectation of T square. Now, in the case of uniformed distribution the

mean is half and expectation T square is 1 by 3 that is equal to 3 by 2.So, 3 by 2 X is the best

scale  equivariant  estimator  of  theta.Now, let  us  just  have  a  comparison between various



estimators for this problem. See let me give the notations here say d 1 that is 2 X which is

actually equal to delta 2 under this notation because delta k is k X so, this is method of

moments estimator here. (No audio from: 12:42 to 12:49)

And d 1 sorry d 2 that is equal to X that is equal to delta 1 is the maximum likelihood

estimator of theta.And this is d 3 that is equal to 3 by 2 X that is actually delta 3 by 2 this is

the best scale equivariant estimator of theta.Naturally d 3 is better than both d 1 and d 2 also

let us compare d 1 and d 2 what is the risk of d 1 that is equal to expectation of 2.So, actually

we have the general form here we can calculate the risk function of delta k that is expectation

of  k T minus 1 square that  is  equal  to  k square  expectation of  T square  minus  twice  k

expectation of T plus 1 that is equal to k square expectation of T square is 1 by 3 minus twice

k expectation of T is half plus 1 that is equal to k square by 3 minus k plus 1.

So, from here the risk function of the method of moments estimator that will be equal to 4 by

3 minus 2 plus  1 that  is  equal  to  1 by 3.The risk function of  d 2 that  is  the maximum

likelihood estimator that is the risk of delta 1 that is equal to 1 by 3 minus 1 plus 1 that is

equal to 1 by 3.And the risk of d 3 that is the best scale equivariant estimator that is obtained

by putting k equal to 3 by 2 that is equal to 9 by 4 into 3 minus 3 by 2 plus 1 so, that is equal

to  1  by  4  which  is  less  than  1  by  3.So,  in  this  particular  case  the  method of  moments

estimator and the maximum likelihood estimators they have the same risk and the best scale

equivariant estimator is better than both of them.

So, here you can see the concept of invariance helps us in reducing the mean squared error

because  here,  the  risk  criteria  is  actually  the  mean  squared  criteria  mean  squared  error

criteria.
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Now,I will generalize this problem here I have considered only one observation from the

uniformed distribution.Now, in place of one observation suppose I have n observation let us

consider generalization to n observations. If I have generalization to n observations that is x 1

x 2 x n follows uniform 0 theta, the last in estimating theta is once again the same I am

considering to keep the problem invariant the group of transformations is the scale group of

transformations. (No voice from: 16:42 to 16:52) Now, here x n is let me call it say T is

complete  and  sufficient  rather  let  me  call  it  y.  And  we  know  the  distribution  of  y  the

distribution of y is n y to the power n minus 1 by theta to the power n.

Then the distributions f y f y theta where theta greater than 0, they will remain invariant

because if I consider the distribution of see if I take g c of y then that will be equal to c of y.

Because if each of the observation is shifted by c x then x n that is the maximum will also be

shifted by c.So, x n goes to c x n and therefore, theta will go to c theta for this density also

therefore,  this  density  family  of  distribution  is  invariant  under  the  scale  group  of

transformations. And same thing will happen to the a also that is g c tilde a this will become

equal to c a theta goes to c theta and a goes to c a.

So, we can consider the form of scale equivariant estimator based on y because this is the

complete sufficient statistics. So, rather than starting from x 1 x 2 x n we will initially itself

restrict attention to x 1 that is the x n that is the sufficient statistic. So, this is obtained by

considering the condition that is d of g c y equal to g c tilde of d y for all y and for all c.Now,



this condition gives d of c y is equal to c of d y so, you can choose c is equal to 1 by y. So,

there is no invariant here actually no maximal invariant here you will get d of 1 is equal to 1

by y d of y this implies d of y is of the form this d 1 is a constant a constant times y.

(Refer Slide Time: 20:14)

So, we can write the form of a scale equivariant estimator is then let us call it delta k of y is

equal to k times of y. In fact if I consider delta 1 that is equal to Y this is the maximum

likelihood estimator and if I take delta is equal to n plus 1 by n that is n plus 1 by n Y this is

the minimum variance unbiased estimator of theta so these two things are known to us.Now,

let us try to see whether I get something else by considering the minimization of the risk

function with respect to k. So, let us consider the risk function of delta k that is equal to

expectation of k Y by theta minus 1 square.See once again we can look at this density if I

define say T is equal to Y by theta then the density of T is nothing but n t to the power n

minus 1 0 less than T less than 1 0 otherwise because this is the density of y.

So, if I consider the density of y by theta then 1 by theta d y will be equal to d T so, this

density reduces to n t to the power n minus 1.So, if I look at expectation of T that is equal to

integral n t to the power n d t 0 to 1 that is equal to n by n plus 1.And expectation of T square

turns out to be 0 to 1 n t to the power n plus 1 d t that is equal to n by n plus 2 so, this is equal

to expectation of k T minus 1 square.If we consider the minimization with respect to k R is

minimized with respect to k if del R by del k equal to 0 why because this is nothing but a

convex function of k this is convex function of k.



So, this del R by del k this gives twice expectation k T minus 1 into T equal to 0 that means k

is equal to expectation of T by expectation of T square and that is equal to n by n plus 1

divided by n by n plus 2 that is equal to n plus 2 by n plus 1 so, delta of n plus 2 by n plus 1

that is n plus 2 by n plus 1 y is the best scale equivariant estimator of theta.Once again we can

look at the relative risk comparison or risk improvement here naturally here you have the

coefficient 1 here you have coefficient n plus 1 by n and here you have n plus 2 by n plus 1

so, this is the best. That is the risk of this will be the smaller than both of this now let us look

at the overall comparison of the risk values here.

(Refer Slide Time: 24:10)

So, what is the value of R theta delta k that is k square expectation of T square minus twice k

expectation of T plus 1 that is equal to n by n plus 2 k square minus twice n by n plus 1 k

plus1.So, if I look at the risk of say the maximum likelihood estimator here k equal to 1 so,I

get n by n plus 2 minus twice n by n plus 1 plus 1 so, you can simplify this that is equal to n

square plus n minus twice n square minus 4 n plus n square plus 3 n plus 2 divided by n plus

1 into n plus 2 so this get simplified that is equal to 2 divided by n plus 1 by n plus 2.If we

look at the risk of the unbiased estimator minimum variance unbiased estimator then that is

equal to it is obtained by the value k equal to n plus 1 by n here.

So, here if we substitute that we get n by n plus 2 n plus 1 square by n square minus twice n

by n plus 1 into n plus 1 by n plus 1 so, here these terms cancelled out and we get here n

square plus 2 n plus 1 divided by n into n plus 2 this is minus 1 because this is minus 2 plus 1



that is equal to once again 1 by n into n plus 2.So, naturally you can see that this is greater

than let us also look at the risk of the best scale equivariant estimator that is equal to n by n

plus 2 into n plus 2 square by n plus 1 square minus twice n by n plus 1 into n plus 2 by n

plus 1 plus 1 so this can be simplified that is equal to n square plus 2 n minus twice n square

minus 4 n plus n square plus 2 n plus 1 divided by n plus 1 square 1 by n plus 1 square.

(Refer Slide Time: 27:27)

So, if we compare now this 1 by n plus 1 square less than 1 by n into n plus 2 because this is

n square plus 2 n and this is n square plus 2 n plus 1 so d b S is better than d u m.Similarly, if

I compare the MLE and the UMVUE then 2 by n plus 1 into n plus 2 and 1 by n into n plus 2

let us look at the comparison here.So, this term if I multiply I get twice n square plus 4 n and

here I get n square plus 3 n plus 2 so, if I put greater than this is reducing to n square plus n

greater than 2 so, this condition is true that means d U M is better than d M L.So, in this

particular case the best scale equivariant estimator turns out to be the best among the three

given estimators.
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Let us take the normal distribution case x 1 x 2 x n follows normal mu 1 where mu is a real

number we consider the group of translations or the location transformations g c of x is equal

to x plus c where c is any real number.Now, you observe here that X i plus c that will follow

normal mu plus c 1 so, if mu is a real number then mu plus c is also a real number so, the

family is  invariant this  family is  invariant under the location group. Let us take the loss

function here as mu minus a square now if mu goes to mu plus c, a should go to a plus c so if

I take a going to a plus c then the loss function remains invariant and therefore, the estimation

problem is invariant.

So, now let us find out the form of a location equivariant estimator this must satisfy now in

this problem X bar is sufficient.So, we will restrict attention to the distribution of X bar based

on X bar. So, we will have T of X bar plus c is equal to T of X bar plus c for all c and for all

XX bar so you choose c is equal to minus X bar so, you will get T X bar is equal to X bar

plus a constant so, we call it say d k where k is any real number. So, this is the form of a

location equivariant estimator that it is X bar plus a constant.

So, if I consider the risk function of this, that is equal to expectation of X bar plus k minus

mu whole square that is equal to expectation of X bar minus mu square plus k square plus

twice k expectation of X bar minus mu this is 0 so, you are left with 1 by n plus k square this

is minimized at k equal to 0.So,X bar is the best location equivariant estimator of mu.
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Let us generalize this problem;I consider here the variance also to be unknown x 1 x 2 x n

following say normal mu sigma square. Now, we maintain the same loss function no sorry we

change the loss function as mu minus a by sigma whole square.Let us consider the group of

transformations which are linear or affine (No audio from: 33:20 to 33:27)a x plus b where a

is a positive number and b is any real number this is called group of linear transformations or

affine transformations so, we will use the notation g a.Now, under this the distribution of a X

i plus b is normal a mu plus b a square sigma square so, a mu plus b is another real numbers a

square sigma square is positive therefore, the family is invariant.

The family  of  normal  mu sigma square  distributions  this  is  invariant  under  the  group g

a.Naturally you are seeing that a mu goes to a mu plus b a square sigma square goes to a

sigma square goes to a square sigma square therefore, if I want to consider the let me put here

d then d should go to a mu plus d. Then the estimation problem is invariant, (No audio from:

34:53 to 35:04) then the estimation problem is invariant under the group g.Now, to derive the

form of a affine equivarentestimator (No audio from: 35:13 to 35:22) let us consider the form

of an affine equivarent  estimator  then you will  get  d of X bar S square so,  here in  this

problem X bar and S square is complete and sufficient.

So, a d X bar S square plus b is equal to d of aX bar plus b a square S square for all a and for

all b and for all X bar and S square.So, you choose b is equal to minus aX bar and a is equal



to 1 by S, then this will give us d of X bar S square is equal to X bar plus some constant times

S.So, this is the form of an affine equivarent estimator let us look at the risk function here.

(Refer Slide Time: 36:55)

Let us consider the risk function of d k that is equal to expectation of X bar plus k S minus

mu by sigma whole square that is equal to expectation of X bar minus mu by sigma whole

square plus k square expectation of S square by sigma square plus twice k expectation of X

bar minus mu S by sigma.Now, in the sampling from normal distribution we know that X bar

and S square they are independently distributed. So, this term will become 0 because this will

become expectation of X bar minus mu into expectation of S by sigma and this is 0 as X bar

and S square are independent in sampling from normal populations.

So, this term simply becomes 1 by n plus k square expectation of S square is sigma square so,

this is simply one.Once again this is minimized when k equal to 0 so,X bar is the best affine

equivariant estimator of mu.Suppose I take the loss function here that means the problem is

of estimating sigma square. If I consider this then the estimation problem remains invariant

under the affine group if d goes to a square d, because sigma square goes to a square sigma

square so, this will get this will remain invariant if d goes to a square d.
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So, the form of an affine equivariant estimator for sigma square this should satisfy delta of a

x bar plus b a square S square is equal to a square delta of x bar S square. So, you choose b is

equal to minus a X bar and a is equal to 1 by S so, then this will imply that delta of X bar S

square is nothing but a constant times S square because this will become 0 this will become 1

so where k is a positive real.Let us look at the minimization of the risk of delta k that is equal

to expectation of k S square minus sigma square by sigma square whole square let us use the

notation.

SW is equal to say S square by sigma square that follow chi square n minus 1 actually it will

depend upon what notation for S square I am using if I am using S square is equal to sigma X

i minus XS bar whole square by n minus 1 then we should have n minus 1 S square by sigma

square follows chi square on n minus 1 degrees of freedom.So, we can use some modified

notation here because I substituted here expectation of S square is equal to sigma square so,

actually I am choosing the definition of S square as 1 by n minus 1 sigma X i minus X bar

whole square.

So, let us use the notation(No audio from: 41:59 to 42:09) so, S square is equal to 1 by n

minus 1 sigma X i minus X bar whole square and let us write this S square by sigma square

as say W then this is reducing to expectation of k times W minus 1 whole square.Now, we

can find out the minimization del R by del k that will give twice expectation k W minus 1

into W this will give k time is equal to expectation of W minus expectation of W square.Now,



let us look at these terms here expectation of W is equal to 1 because expectation of S square

is  equal to sigma square.  What  is  expectation of W square?That will  be equal  to so if  I

calculate say T is equal to n minus 1 S square by sigma square that is chi square on n minus 1

degrees of freedom.

So, expectation of T is n minus 1 and expectation of T square is equal to n minus 1 square

into n plus 1 n minus 1 into n plus 1 so, expectation of W is equal to because here W is equal

to T by n minus 1.So, expectation of W square is 1 by n minus 1 square into expectation of T

square so that gives us n plus 1 by n minus 1.So, this is equal to then expectation of W is

equal to n minus 1 by n plus 1 so, n minus 1 by n plus 1 S square that is equal to 1 by n plus 1

sigma X i minus X bar whole square is the best affine equivariant estimator of sigma square.

(Refer Slide Time: 45:07)

So,  let  us  take  the  whole  thing  in  the  perspective  here  for  normal  mu  sigma  square

distribution we had sigma square M L as 1 by n sigma X i minus X bar whole square. We had

the minimum variance unbiased estimator as 1 by n minus 1 sigma X i minus X bar whole

square whereas, the best affine equivariant estimator is now1 by n plus 1 sigma X i minus X

bar whole square.  Since all of these are only multiples of sigma X i minus X bar whole

square this is the best among these two these three.So, you can see here that the principle of

invariance allows us to improve upon the given estimators.



In the estimators which we have obtained using the method of maximum likelihood estimator

method of moments or by the method of minimum variance unbiased estimation etcetera.Of

course in this problem it can be further shown that even this best affine equivariant estimator

can be further  improved,  but that  is  by another  approach.  So,  we will  not  be doing that

approach here now for this problem I want to give one more application here let us consider

another loss function.Say L star in place of star let us put L 1 mu sigma d is equal to d minus

mu minus eta sigma whole square divided by sigma square.

Now, what is this problem this can be considered as estimation of theta is equal to mu plus

eta sigma where eta is a fixed constant.See in the case of normal distribution mu plus eta

sigma denotes a quantile because here if I consider probability of X less than or equal to theta

that is probability of X less than or equal to mu plus eta sigma that is equal to probability of

X minus mu by sigma less than or equal to eta that is equal to phi of eta where phi is the

standard normal c d f.

(Refer Slide Time: 47:47)

So  if  I  put  this  is  equal  to  p  that  is  eta  is  equal  to  phi  inverse  p  then  this  the  p  th

quantile.Quantile of order p that means if I am considering the distribution here then this

probability is p this probability is 1 minus p. So, this point is mu plus eta sigma where eta is

given by phi inverse p so, this the p th quantile.So, like mean median etcetera the quantiles

also of interest to be estimated to denote or to find out various locations on the distribution let

us consider the estimation of this here.
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And so, consider the affine group now we have already seen here that mu goes to a mu plus b

sigma will go to a sigma. So, what will happen to theta?Theta is equal to mu plus eta sigma

so, this will go to a mu plus b plus eta a sigma that is equal to a mu plus eta sigma plus b that

is equal to a theta plus b.Therefore, d must go to a d plus b so, if that is happening then L 1

remains invariant. So, affine equivariant estimator if I consider affine equivariant estimator

that must satisfy d of aX bar plus b a square S square is equal to a d X bar S square plus b.

So, if you choose b is equal to minus a X bar and a is equal to 1 by S then we get the form of

d X bar S square as X bar plus because this will become a constant and we get minus a X bar

and then we put 1 by aso, S is multiplied by this constant plus this x bar.That is the form

which is the same which we obtained for the estimation of mu.Now, if you consider the risk

function of this estimator that is expectation of X bar plus k S minus mu minus eta sigma by

sigma whole square then we can write it as expectation of X bar minus mu by sigma whole

square  plus  expectation  of  k  S  minus  eta  sigma by sigma whole  square  plus  two times

expectation of X bar minus mu by sigma into k S minus eta sigma by sigma.

Now, here these terms are independent because in the sampling from normal distribution X

bar and S square are independent and this term becomes 0.So, the problem has reduced to

minimization of this term expectation of k S minus eta sigma by sigma whole square.Now,

this is a convex function of k so, the minimization will occur when we differentiate this with

respect to k and put equal to 0.
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So, the minimization with respect to k is achieved when del R by del k equal to 0 and del R

by del k is actually equal to twice expectation k S minus eta sigma into S equal to 0 that will

give us k is equal to eta sigma expectation of S divided by expectation of S square.Now, if we

use the no terminology used in the derivation for estimation of sigma square we had defined

T as n minus 1 S square by sigma square then this is following chi square distribution on n

minus 1 degrees of freedom.

Now, expectation of S is coming in the terms of T to the power half so, let  us calculate

expectation of T to the power half. We have the density function of t as 1 by 2 to the power n

minus 1 by 2 gamma n minus 1 by 2 e to the power minus t by 2 t to the power n minus 1 by

2 minus 1 where t is positive.So, expectation of T to the power half that will be 1 by 2 to the

power n minus 1 by 2 gamma n minus 1 by 2 e to the power minus t by 2 t to the power n by

2 minus 1 d t that is equal to gamma n by 2 2 to the power n by 2 divided by 2 to the power n

minus 1 by 2 gamma n minus 1 by 2 that is equal to root 2 gamma n by 2 divided by gamma

n minus 1 by 2.

Now, S here we can consider S by sigma and S square by sigma square so, this is reducing to

expectation of W divided by expectation of W square sorry expectation of W to the power

half because here I get S by sigma so, this is W to the power half and expectation of W.Now,

what is W to the power half that is equal to T to the power half by square root n minus 1 so,

expectation of W to the power half is equal to root 2 gamma n by 2 by root n minus 1 gamma



n minus 1 by 2.So, this terms we substitute here eta root 2 gamma n by 2 divided by square

root n minus 1 gamma n minus 1 by 2 and then expectation of W is equal to 1.

(Refer Slide Time: 56:02)

So, this is the term that we get of course, we can write it as eta root 2 by n minus 1 gamma n

by 2 by gamma n minus 1 by 2 so this is the best choice of k and we are getting X bar plus let

me call this as the this choice as say k star k star S is the best affine equivariant estimator of

theta  that  is  the  quantile.  Once  again  you  can  see  this  is  different  from the  maximum

likelihood  estimator  so,  it  is  better  than  MLE and  UMVUE of  theta.So,  today  we  have

discussed the concept  of invariance in  detail  and we have seen that  finding out  the best

invariant estimator under a certain group of transformations many times leads us to much

better estimators than the conventional methods.

That we have discussed till now like the maximum likelihood estimation or the minimum

variance unbiased estimation.Another point which is to be noted here we have not discussed

it here till  now is that there are procedures which can also lead to improvement over the

equivarient estimators. But that is part of some advanced discussion if we find time we will

be able to cover it somewhat later. So,I will also introduce some decision theory concepts

such as the Bayes estimation and the mini max estimation in the next lectures.


