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Bayes and Minimax Estimation – II

In the last lecture I have introduced two criteria for determining optimal estimators. As

we discussed earlier, that in an estimation problem it  is not possible to find the best

estimator or which is optimal in every sense or which is having the smallest risk function

throughout,  except  in the trivial  or in consequential  situations.  So,  what we did? We

introduced, there are two methods of resolving these issues; one is that we can restrict

attention to a smaller class of estimators. We can consider criteria such as unbiasedness

or invariance and then find out the best in that class, that is the best unbiased estimator,

which we call as uniformly minimum variance unbiased estimator or a best equivariant

estimator, that is having the smallest risk in the class of equivariant estimators if we can

introduce  certain  group  of  transformations  under  which  the  estimation  problem  is

invariant.

Another method is that we can introduce a new criterion for ordering the decision rules,

one is through averaging and this is called the Bayesian estimation. Here, what we do,

we  consider  the  parameter  also,  which  is  appearing  in  the  distribution  as  a  random

variable and we take a distribution, which we call prior distribution. Now, we take the

average of the risk function with respect to this prior distribution. So, the risk function is

reducing to a number and now you order, that is the one, which is having the smallest

Bayes risk, this is called Bayes estimator. And another criterion is, consider the worst

possible  scenario  for  every  estimator.  So,  we  take  the  maximum  risk  and  then  we

minimize, that is known as the minimax estimator.

So,  we  introduced  Bayesian  and  minimax  estimation.  Now, related  to  the  Bayesian

estimation, I introduce some additional concept, such as limit obvious rules and epsilon

Bayes rule, extended Bayes rule or generalized Bayes rule.



So, today we will start with the elaboration of each of these concepts and then we will try

to look at some relationship, how to find out minimax estimation given a sequence of

Bayes estimators, etcetera.
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So, let us take, say X 1, X 2, X n be a random sample from normal, say theta sigma

square population and sigma square is known. Now, if sigma square is known, in this

case  we  are  considering  estimation  of  theta  with  respect  to  say,  squared  error  loss

function, that is, L theta a is equal to theta minus a whole square.

Now, note here, that when sigma square is known, X bar is sufficient statistic and we can

restrict attention to the, we can restrict attention to estimators based on X bar. Now, what

is the distribution of X bar? X bar follows normal theta sigma square by n. See, we can

do some shifting, we can write root n X bar by sigma that will follow root n theta by

sigma 1. Now, let  us use some other notation,  say eta here,  and we call  this y, then

actually, y is following normal eta 1. Estimation of theta is same as estimation of eta

because it is only a scalar multiple of theta here.

So,  optimality  criteria  for  estimating  theta  are  same as  those  for  estimating  eta.  For

example, if I say delta is a minimax estimator for theta, then root n by sigma delta, that

will  be  minimax  for  eta.  If  root,  if  delta  is  Bayes  with  respect  to  for  theta,  then

correspondently,  for  eta  we  can  obtain  root  n  by  sigma  delta  as  Bayes  estimator.

Similarly, if I say, delta is u m v u E for theta, then root n by sigma delta will be u m v u



E for eta. Therefore, the whole problem has been then reduced to, you can consider the

model in a simplified…
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So, it is enough to consider the following estimation problem. We can consider x follows

normal theta, 1; theta is any real number L, theta a is equal to theta minus a square. Now,

this is a hallmark of all such problems. In any inference problem, we reduce the problem

to  the  simpler  model  by  means  of  sufficiency.  Now, in  this  particular  case,  this  is

extremely straight forward because the loss function is squared error.

In fact, the first thing, that we can always say, that whenever there is a general inferential

procedure and it is not based on sufficient statistics, then we can always consider the

class  of  all  inferential  procedures  based  on  sufficient  statistics.  They  will  be  more

optimal  correspondent  to  or  in  some  sense,  they  will  be  better  than  the  original

procedures. If the loss function is convex, then we can restrict attention to further non-

randomized estimators. See, randomized estimators means that we may choose estimator

delta 1 with certain probability, estimator delta 2 with certain probability, etcetera, or we

can have a probability distribution over the class of usual estimators.

Now, if the loss function is convex, we can restrict further and we can consider only non-

randomized estimators. Same thing happens in the Bayesian estimation also, where we

can  always  restrict  attention  to  the  non-randomized  Bayes  estimators.  So,  the  initial

problem of estimating the parameter theta in a sampling from a normal distribution has



been reduced to writing, that x follows normal theta, 1; theta belongs to r and L, theta a is

equal to theta minus a square.

Now, let us consider here Bayesian estimation. We consider prior distribution for theta

as, say normal 0 tau square, so this is our notation; I call it pi tau as the prior distribution.

This  is  normal  0  tau  square,  so  tau  square  is  some  fixed  quantity  because  we  are

assuming some prior distribution.  So, this  parameter  of the prior  distribution will  be

known. Now, in order to calculate the Bayes estimator, we need to calculate the posterior

distribution, that is, the conditional distribution of theta given x.

So, we write down all the models here. The distribution of x will be considered as the

conditional distribution of x given theta. So, the probability density is 1 by root 2 pi E to

the power minus 1 by 2 x minus theta square, we will use the phi notation here, phi of x

minus theta,  where phi denotes the probability  density function of a standard normal

random  variable.  So,  we  will  use  this  notation,  this  notation  will  simplify  these

calculations. Here, x is any real number and theta is any real number. So, this is treated

as the conditional distribution of x given theta, which is actually the original distribution

of x, the density of theta, the prior density that is equal to 1 by tau root 2 pi E to the

power minus theta square by 2 tau square. Once again we will use the phi notation, then

we can write it as 1 by tau phi of theta by tau theta belonging to R. Now, we write down,

this is the conditional distribution of x given theta; this is the prior distribution or the

marginal distribution of theta.

So, we write down the joint probability, both are continuous and therefore, this is density.

We can talk about the joint probability density of x and theta is f star x theta, that is, the

product of the conditional distribution into the marginal distribution, so that is equal to

phi of x minus theta 1 by tau phi of theta by tau. Here, theta and x, both are on the real

line. Now, to calculate the conditional distribution of theta given x, we need the marginal

distribution of x and the marginal distribution of x is obtained by integrating this term

with respect to theta.

Now, you note this thing, here theta is involved at both the places, therefore we need to

resolve this into a single term involved in theta. So, we use the following formula, we

can use the following formula something like 1 by b 1 phi of x minus a 1 by b 1 1 by b 2

phi of x minus a 2 by b 2. So, this is 1 by root 2 pi b 1 E to the power minus half x minus



a 1 by b 1 square and this is 1 by root 2 pi b 2 E to the power minus half x minus a 2 by b

2 square.

In this one what we do? We collect and make a perfect square for x again and if we

resolve this, this turns out to be 1 by root b 1 square plus b 2 square phi of a 1 minus a 2

by root b 1 square plus b 2 square into root b 1 square plus b 2 square by b 1 b 2 phi of

root b 1 square plus b 2 square by b 1 b 2 x minus b 2 square a 1 plus b 1 square a 2 by b

1 square plus b 2 square, this is b 1 square a 2.

(Refer Slide Time: 13:10)

Now, you notice  here,  in  this  expression  x  is  appearing  in  both  of  them here,  x  is

appearing here and this term is free from x. So, if we apply this formula to this one, we

can write, this is phi of theta minus X 1 by tau phi of theta by tau. If we compare this

with this here, here x is playing the role of theta here and x is a 1, b 1 is 1, then b 2 is tau,

a 2 is 0 and b 2 is tau here.
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So, using this we can write, f star x theta can be written as 1 by root 1 plus tau square phi

of x divided by root 1 plus tau square root 1 plus tau square by tau phi of root 1 plus tau

square by tau theta minus tau square x by tau square plus 1. Here, theta is a real number,

x is any real number. So, the marginal probability density of x, let me use a notation, say

h x here, that is, integral f star x theta d theta from minus infinity to infinity. So, here if

we integrate this term with respect to theta, note here, this is term free from theta and in

the 2nd term is nothing, but a probability density of theta with mean mu given by tau

square x by tau square plus 1 and sigma given by tau by square root 1 plus tau square.

So, integral of this quantity will be 1 and you will be left with 1 by root 1 plus tau square

phi of x divided by root 1 plus tau square for x belonging to r, that means, actually, the

marginal distribution x is normal with mean 0 and variance 1 plus tau square.

Now, if we consider the conditional distribution,  that is the posterior density of theta

given x, let me use the notation, g star theta given x, that is, f star x theta divided by h x.

If we consider this term divided by this, then you can see easily this density part cancels

out and we are left with the remaining density, which is again a normal density. So, what

we are saying, that theta given x follows a normal distribution with mean tau square x

plus tau square plus 1 and the variance is tau square by tau square plus 1. Now, the loss

function is squared error, therefore the Bayes estimator will be nothing, but the mean of

the prior distribution.
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So, since the loss function is the squared error, the Bayes estimator is the mean of the

posterior distribution,  that is, so let  me use the notation delta tau, so that is equal to

expectation of theta given x. So, here the mean is tau square x by tau square plus 1. So,

the Bayes estimator is simply tau square x by tau square plus 1 delta tau form is given

like this and also, we can talk about the Bayes risk. The Bayes risk of delta tau is, r tau, r

pi tau delta tau that is equal to expectation of theta minus delta tau. Here, what we can

consider? Firstly, I can consider with respect to the posterior distribution and then with

respect to the marginal distribution of x.

Now, here if you see, delta tau is nothing, but the mean of this, so we can express it as

expectation of theta given x theta minus expectation theta given x, but this is nothing, but

the variance of this distribution. So, it is variance of theta given X. Now, variance of

theta given x is tau square by tau square plus 1. So, this value turns out to be tau square

by tau square plus 1. Now, this is constant, therefore this value will remain as it is.

Now, we note certain facts here. In this, if I consider tau tending to infinity, if we take,

say tau tending to infinity, then we observe, that delta tau converges to x. So, x, which is

equivalent to X bar, in the original problem if I consider x 1, x 2, x n following normal

theta 1, then that is actually a limit of Bayes rule. In the earlier case we have discussed

the u m b u E maximum likelihood estimator etcetera, so we have seen is x is actually a



maximum likelihood estimator, it is method of moments estimator, it was also shown as

the minimum variance unbiased estimator.

Here, what we are showing is, that actually it is a limit of Bayes rules, here let me use a

notation, delta x or we can call it, yeah, delta x is a limit of Bayes rules because this

convergence is for all x. Now, let me also illustrate the concept of generalized Bayes

rules and extended Bayes rule, etcetera.

(Refer Slide Time: 21:20)

Let us consider an improper prior for theta and we consider g theta is equal to 1 minus

infinity less than theta less than infinity. So, if this is nothing, but the Lebesgue measure

actually  and what  this  is  actually  denoting? This is,  actually  in popular terminology,

called a non-informative prior or it is, in this particular case, it is a Jefferey’s prior named

after Jefferey. And Jefferey proposed that non-informative prior should be taken as a

proportional to the Fisher’s information.

Now, in  this  particular  case  we  have  calculated  the  Fisher  information.  The  Fisher

information was n r 1, so that was actually a constant, if you remember, for the normal

distribution n by sigma square. And then, when we take the reciprocal, we get sigma

square by n as the (( )) lower bound for the variance of the unbiased estimator of theta.

Here, n is 1 and sigma square is also 1, that we have taken in the model. So, the Fisher

information will be actually equal to 1. So, we are taking simply that constant. We can



put c here also, it  does not matter, this  is called non-informative prior and here it  is

improper prior.

Let us calculate the, apply the same procedure for calculating the base estimators. So, the

joint density, which is not actually density, it is improper of x and theta. So, we use a

notation, say f star x theta, so f x theta was phi of x minus theta and g theta is 1 here, x

and theta, so h x, that is, the marginal distribution of x, that we obtain by integrating this

with respect to theta. So, if you integrate this with respect to theta, you get 1 and again

this is not a distribution. Surprisingly, if you calculate the posterior, this is a density, let

me use a notation g star theta given x, then it is phi of theta minus x divided by 1, here

theta is a real number. So, theta given x equal to x, that is a proper distribution, it is

normal distribution with mean x and variance 1.

Therefore,  we will be able to calculate the Bayes estimator, which will be called the

generalized Bayes estimator here. So, the generalized Bayes estimator of theta is, let me

call it delta GB, that is equal to x, that is the mean of this x. So, delta GB is equal to x, is

generalized Bayes.
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Next, we consider extended Bayes estimation. So, we will show, that delta x is equal to,

x is an extended Bayes estimator. Now, for extended Bayes estimator what you have to

show, that for every epsilon there exists a prior, for every epsilon there exists a prior, let



us call  it  pi  epsilon such that this estimator  delta  is epsilon based with respect to pi

epsilon.

Now, in this, our problem, we already have taken a sequence of prior distributions with

respect to which we showed actually, that x is a limit of Bayes rules. So, we will take the

same sequence here and let us consider here. So, consider here, prior pi tau as normal 0

tau square and with respect to this infimum Bayes risk, overall estimators is nothing, but

the Bayes risk of the Bayes estimator, which we have calculated as tau square by tau

square plus 1.

Let us also look at what is the Bayes risk of delta, that is nothing, but expectation of r

theta delta with respect to pi tau, but this quantity r theta delta is nothing, but expectation

of theta minus x square with respect to the distribution of x, but this is nothing, but the

variance of x, that is 1, so it is equal to 1.

Now, if we consider for every epsilon greater than 0, we must find tau such that r pi tau

delta is less than or equal to infimum of r pi tau delta plus, so let me use another notation

here, say delta star for this. Let me put here this as delta star, this is delta star, this is delta

star plus epsilon. Now, this statement left hand side is 1, so 1 less than or equal to tau

square by 1 plus tau square plus epsilon or epsilon is greater than or equal to 1 by 1 plus

tau square. Now, here we are taking limit as tau tending to infinity, so this is possible,

that for every epsilon greater than 0 we can choose a tau such that epsilon is greater than

or equal to 1 plus tau square. So, delta star x is equal to x, is an extended Bayes rule.

Now, one important observation, that we should make, we considered the sequence of

prior distributions with respect to which we could obtain the Bayes estimators. The form

of the Bayes estimators was tau square x by tau square plus 1 here, which is actually a

scalar multiple of, you can write it as say c x and here, this c x is always between 0 and 1

because tau square denotes the variance term. So, this will be strictly between 0 to 1; that

means, c equal to 1 is not a possibility here.

When we, so the question is, is there any other sequence or any other prior with respect

to  which  x  could  be  Bayes?  Actually,  we  have  obtained  x  as  a  generalized  Bayes

estimator, so is there a proper prior also with respect to which x is Bayes? The answer is

no. Now, this observation is an important observation and this can be extended to other

distributions also or other problems also.
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So, let me, firstly show this thing. We further show, that delta star cannot be a Bayes rule

with respect to a proper prior in this problem. Let us take, say, assume the contrary, that

is, let delta star be Bayes with respect to a prior, say pi star. If that is so, then in the

squared error loss function you are getting delta x is equal to expectation of theta given x

with respect to this particular prior.

So, let us write down r pi delta star. Of course, this is equal to expectation of r theta delta

star with respect to pi star. Now, this  is expectation of, expectation of theta minus x

square,  this  is  with  respect  to  the  conditional  distribution  of  x  given  theta,  that  is,

expectation pi star. This is nothing, but the variance of x, that is, 1.

Let us also consider r pi star delta star as expectation expectation theta minus x square,

this you are writing as expectation of expectation. Now, when I write two expectations,

then it can be in any order, like it can be x given theta, then with respect to theta, or it

could be theta given x and then with respect to x, it can be in either form. Now, let us

write this, so this is equal to expectation of expectation theta square plus x square minus

theta x minus theta x. I am writing this term two times, so the first one is expectation of

expectation theta square plus expectation of expectation x square. Once again I can take

any order, when we, I take the repeated expectations minus expectation of expectation

theta X. Now, here what I do? I firstly take with respect to x, then with respect to theta

and in the 2nd case I reverse this process, I take x here and I take theta given x.



Now, if I look at this term here, this term expectation of x given theta, this will give me

theta x, so this will become theta square. And if I look at this one here, expectation of x,

then expectation of theta given x of theta, that is x, so that is becoming x square. Now, in

this expression, you can consider this as simply expectation of theta square plus x square

minus theta square minus x square. So, these terms vanish, that is equal to 0, so this 1

and 2 are, this 1 and 2 are in contradiction.
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Statements 1 and 2 contradict each other, hence delta star is equal to x cannot be Bayes.

Now, what is the property that we have used in arriving at a contradiction? The property

that we have used in arriving this contradiction is that x is unbiased for theta and the loss

function is squared error. Therefore, the Bayes estimator is the mean of the posterior

distribution. Now, whenever this property is true, this becomes a general result.

So,  we  state  the  following  general  result  can  be  extended  to  have  a  more  general

theorem. So, x given theta, that follows p theta, theta has a prior distribution. Then, for

estimating, say theta with respect to the squared error loss, no unbiased estimator of theta

can be Bayes estimator of theta, unless of course, expectation of x minus theta square is

0, which is of course, impossible.

Next, we establish a connection between Bayesian and minimax estimators. In fact, the

Bayes estimators are used to prove the minimaxity of certain estimators, so Bayesian

approach is the approach that is being used here.



We have the following theorem here, if delta naught is a Bayes estimator with respect to,

say, prior pi naught and r theta delta naught is less than or equal to r pi naught delta

naught for all theta, then delta naught is a minimax estimator of theta and pi naught is the

least favorable prior.
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Let us look at the proof of this statement. So, you remember, that in the previous lecture I

introduced the minimax value or the upper value of the game and maxmin value, that is,

the lower value of the game. The way we had defined the lower value and the upper

value, the lower value was defined as supremum infimum r pi delta, where infimum is

over all  the estimators and supremum is over all  the prior distributions,  that was the

lower value of the estimation problem.

This comes from the game theory, so generally we use the terminology lower value of

the game. However, since we are dealing with the estimation here, I will write it as the

lower value of the estimation  problem. And similarly, the and this  is  also called  the

maxmin value and similarly, we have the upper value of the game, that  is,  infimum

supremum r  pi  delta,  it  is  also equal  to  infimum supremum r theta  delta,  where the

supremum is over all the theta and infimum is over all the estimators here. This is called

the upper value of the game and it is always true, that v lower bar is less than or equal to

V upper bar. Now, we consider here, say V upper bar, so V upper bar will be certainly

less than or equal to supremum of r theta delta naught because this is the minimax value.



So, this is for a particular estimator delta naught, so this is going to be more than or equal

to V upper bar.

Now, we have assumed here, that r theta delta naught is always less than or equal to r pi

naught delta naught, so the supremum is also going to be less than or equal to that, that it

is  less than or equal to r pi  naught delta  naught.  Now, here delta  naught is a Bayes

estimator with respect to pi naught, so this is equal to infimum of r pi naught delta over

all the estimators. Now, this is less than or equal to the lower value of the game and

therefore, what we get here? V upper bar is less than or equal to v lower bar.

So, combining 1 and 2, we get v lower bar is equal to V upper bar, but that would mean

all the inequalities, all the inequalities in 2 becomes equalities. Hence, now if you put V

upper bar, that is equal to supremum of r theta delta naught, this implies delta naught is

minimax estimator. And similarly, you will get infimum of r pi naught delta is equal to v

lower bar, which means that pi naught is the least favorable prior.

Let me explain this theorem with respect to one example here. So, what we need in order

to apply the theorem here, that we need a prior and we have a Bayes estimator with

respect to that and then, we have the risk relationship between the risk of delta naught

with the Bayes risk here. So, if we have that, then the estimator becomes minimax and

the corresponding prior will become the least favorable prior.
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So, let me explain it through one example here. Let us take, say x follows binomial n

theta, here the parameter space is the interval 0 to 1 and we take the loss function to be

theta minus a square divided by theta into 1 minus theta. Now, let us consider the prior

distribution for theta to be uniform 0 1, uniform distribution on the interval 0 to 1, that is,

g theta is equal to 1 for 0 less than or equal to theta less than or equal to 1 and it is 0

otherwise.

Now, here the distribution of x, that is, n c x theta to the power x into 1 minus theta to the

power n minus x, where x can take values 0, 1 to n and theta is any value between 0 and

1.  So,  now  in  this  case  you  notice,  here  the  distribution  of  x  is  discreet  and  the

distribution of theta is continuous. So, here it is probability mass function and this is

probability density function.

Nevertheless, we write in the same way, the joint distribution of x and theta is given by,

so I will not call it a density function because this part is not a density function, f star x

theta, that is equal to n c x theta to the power x into 1 minus theta to the power x into 1

minus theta to the power n minus x for x is equal to 0, 1 to n and 0 less than or equal to

theta less than or equal to 1.

Note here, that if I sum with respect to x, then I will get it as 1 and then, if I integrate this

respect to theta, I will get 1. So, this is the proper probability distribution, but this is



known as  a  mixture  kind  of  thing  because  here  x  is  a  discreet  variable,  theta  is  a

continuous variable.  So, the marginal distribution of X, now since it is continuous in

theta we will integrate it with respect to theta, so it is integral of f star x theta d theta

from 0 to 1.

Now, in the integration you see, here n c x will come out, you get integral from 0 to 1

theta to the power X 1 minus theta to the power n minus x d theta, but this is nothing, but

a beta function. So, we get the value as n c x beta of x plus 1 n minus x plus 1 for x is

equal to 0, 1 to n. Actually, it is a proper probability mass function, if you want to see we

can actually simplify this and check it.

(Refer Slide Time: 47:48)

h x, if you simplify, n c x is n factorial divided by x factorial n minus x factorial. Then,

beta term, it is gamma x plus 1, that is x factorial, then gamma n minus x plus 1, that is, n

minus x factorial divided by gamma n plus 2, that is, n plus 1 factorial. So, this after

simplification becomes simply 1 by n plus 1 x is equal to 0, 1 to n, that is, actually you

are getting x. The marginal distribution of x is a discreet uniform distribution on points 0,

1 to n, that is, each one is having equal probability 1 by n plus 1.

Now, we utilize this to calculate the posterior distribution of theta given X. Now, once

again  notice,  here in  theta  the random variable  is  continuous,  therefore  the posterior

distribution  will  be  actually  a  continuous  distribution.  So,  we  will  have  a  density

function, the posterior density of theta given x, then that is obtained as g star of theta



given x, that is equal to f star x theta divided by h x, that is equal to simply 1 by beta of x

plus 1 n minus x plus 1 theta to the power x into 1 minus theta to the power n minus x.

Actually, this is nothing, but a beta distribution, this is beta distribution with parameters

x plus 1 and n minus x plus 1. Now, the loss function, we have considered a weighted

squared error loss function, if you remember, in the previous lecture I have given the

formula, if the loss function is say w theta into theta minus a square, then the form of the

Bayes estimator is expectation of w theta theta given x divided by expectation of w theta

given x is equal to x.

Now, in this case w theta is, in this particular case w theta is 1 by theta into 1 minus theta

1 by theta into 1 minus theta.
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So, if we calculate, now so the Bayes estimator, let me call it delta b, that is equal to

expectation of theta divided by theta into 1 minus theta given x divided by expectation of

1 by theta into 1 minus theta given x is equal to x, that is expectation of 1 by 1 minus

theta.

Now, these quantities we can evaluate the posterior distribution is obtained like this. So,

from here if we calculate expectation of 1 by 1 minus theta, that is equal to 1 by beta x

plus 1 n minus x plus 1 integral theta to the power x 1 minus theta to the power n minus

x minus 1 d theta from 0 to 1. This is conditional expectation with respect to X. Now,



this is nothing, but a beta function, so get beta x plus 1 n minus x divided by beta x plus

1 n minus x plus 1.

So, this can be simplified, gamma x plus 1 gamma n minus x divided by gamma n plus 1

and in the denominator  you will  get gamma x plus 1 gamma n minus x plus 1 and

gamma n plus 2. So, these terms get cancelled out and we get here n plus 1 divided by n

minus x. In a similar way, if we calculate expectation of 1 by theta into 1 minus theta

given x is equal to x, then that will be equal to 1 by beta x plus 1 n minus x plus 1 and

the numerator will get beta X n minus x.

So, after simplification this will become equal to gamma x gamma n minus x by gamma

n, then gamma x plus 1 gamma n minus x plus 1 gamma n plus 2. Once again, if you

simplify these terms we get  n plus 1 into n divided by x and n minus x.  So,  if  we

substitute these quantities here, we get n plus 1 by n minus x divided by n plus 1 into n

divided by x into n minus x that is equal to x by n.

So, our minimum variance and biased estimator or the maximum likelihood estimator is

actually the Bayes estimator  with respect to the uniform prior, if  the loss function is

taken to be theta minus a square by theta into 1 minus theta.
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So, so the Bayes estimator is actually x by n. Now, let us look at the risk of this, so risk

of the Bayes estimator, that is, expectation of x by n minus theta square, that is nothing,



but variance of x by n, that is equal to theta into 1 minus theta by n. And here, we have to

divide by theta into 1 minus theta divided by theta into 1 minus theta. So, this turns out

to be simply 1 by n.

So, if I look at r pi that prior, which we are using uniform 0 theta, I am using a notation

pi say delta b, that will be equal to expectation of r theta delta b with respect to pi. So, it

is again equal to 1 by n.

So, if we look at the theorem, that I gave here in this result, we are having r theta delta

naught here equal to 1 by n r pi naught delta naught is also equal to 1 by n. So, this

proves that. So, an application of the preceding theorem proves that x by n is a minimax

estimator and uniform 0, 1 is the least favorable prior.

In the next lectures I will be discussing further applications of the Bayesian estimation,

in fact, how to use a sequence to prove the minimaxity. In this case we could use only

one prior and we could prove the minimaxity. In the next one we will also introduce an

equalizer estimator, etcetera and how to use that to prove the minimaxity of estimators,

so that I will be taking up in the next class.


