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Bayes and Minimax Estimation – III

In the previous class we have introduced the relationship between the Bayes estimators

and the minimax estimators in, in particular I gave a result, that if we can obtain a Bayes

estimator  with  respect  to  a  certain  prior  and  then,  if  the  risk  satisfies,  say,  certain

property, that is, there is a relation between the Bayes risk and the risk of the estimator,

then the estimator is minimax and the corresponding prior is the least favorable prior.

However, in many cases a single prior or a single Bayes estimator may not work, rather

we consider a sequence. So, a result, in this direction I will restore it here.
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We have the following theorem, let delta n be a Bayes estimator with respect to prior, say

pi n and let delta naught be an estimator with R theta delta naught less than or equal to c

for all theta, where c is limit of r pi n delta n as n tends to infinity, then delta naught is a

minimax estimator. That means, we need not have actually the least favorable prior, but

rather a sequence of priors, which are nice in the sense, that they are Bayes risk converge



to a constant and the given estimator has a risk, which is bounded by that,  then that

estimator will be minimax. Let us look at the proof of this.

Now, we have already introduced the lower value and the upper value of the game or the

lower value and the upper value of the estimation problem. So, using this we have the

upper value of the game less than or equal to supremum of r theta delta naught, that is

less than or equal to c. Now, that is equal to limit of r pi n delta n as n tends to infinity.

Now, this is nothing, but the minimum Bayes risk with respect to prior pi n. Now, this

minimum Bayes risk is always less than or equal to V lower bar and therefore, we are

getting V lower bar is equal to V upper bar. So, again, here 1, all inequalities become

equalities, hence delta naught is minimax.

As an application, let us consider the normal problem once again, x follows normal theta

1 and the prior distributions, that I had taken, pi tau as normal 0 tau square. Now, with

respect to this we had seen, the Bayes estimator delta tau was tau square x by 1 plus tau

square and the Bayes risk, that we had obtained was tau square divided by 1 plus tau

square.

So, now, let us look at the limit of this as tau tends to infinity here, so this tends to 1 as

tau tends to infinity. And if I look at the risk of delta star, that is the x, that was 1. So, in

this case, this theorem is exactly applicable because 1 is less than or equal to 1 is true.

So, delta star that is equal to x is minimax.

Let us summarize the result for the normal distribution. If I am sampling from a normal

distribution and here, I have taken the known variance case. In this case what is turning

out is that the sample mean is extended Bayes, it is generalized Bayes, it is a limit of

Bayes rule, it is a minimax estimator, then the loss function is the squared error. In fact,

even if I am considering the loss function to be an increasing function of the distance

between the estimator and the estimand, this remains a minimax estimator. However,

that, we will talk a little later.
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Let us consider equalizer estimator. An estimator delta naught is said to be equalizer if r

theta delta naught is equal to a constant for all theta. So, we have the following result. In

fact, if we look at the two previous examples, in the normal example x was an equalizer

rule because the risk is 1. In the binomial case, the risk was 1 by n of x by n, so x by n

was an equalizer estimator. So, in general, the equalizer estimators are good in the sense,

that they may be good candidates for becoming minimax estimators.

So, if an extended Bayes estimator is equalizer, then it is a minimax estimator. Let us

take delta naught to be an equalizer, that is, we are assuming r theta delta naught is equal

to c for all theta. Further assume, that delta naught is extended Bayes, then for every

epsilon greater than 0 there exists a prior, let us call it pi epsilon such that r pi epsilon

delta naught is less than or equal to infimum r pi epsilon delta plus epsilon.

So,  now, let  us  consider  the  upper  value  of  the  game,  that  is  less  than  or  equal  to

supremum of r theta delta naught, the supremum is over the parameter space. Now, this

is equalizer estimator, so this is equal to c and this is same as r pi epsilon delta naught

because if the estimator is constant risk, then with respect to any prior, the Bayes risk

will also be equal to c. This is, of course, less than or equal to infimum of r pi epsilon

delta  plus  epsilon.  This  statement  is  actually  a  restatement  of  the  definition  of  the

extended Bayes rule. Now, this infimum is less than or equal to the lower value of the

estimation problem plus epsilon.



If we skip the intermediate statements, we are actually saying, for every epsilon V upper

bar is less than or equal to V lower bar plus epsilon. V upper bar is less than or equal to

V lower bar plus epsilon for every epsilon greater than 0, which means, that V upper bar

should be less than or equal to V lower bar. Since V lower bar is always less than or

equal to V upper bar, we get equality here. So, what we get here, that r theta delta naught,

this must be actually equal to c, this must be equal to V upper bar, that is, delta naught is

minimax. So, if an extended base rule is equalizer, then it will be minimax.

Now, if we look at the previous example of normal distribution we have proved actually,

that  x is  extended Bayes  and it  was  also equalizer  because the risk function was 1.

Therefore,  this  will  be  minimax  from that  result  also,  although  here  we  have  used

another result to prove minimaxity.
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Let us take another example to prove the minimaxity of an extended Bayes rule. So, I

will take a discreet case. Now, let us consider, say x following Poisson theta distribution

once again. Let me explain here; see, we could have considered the model like x 1, x 2, x

n following Poisson theta. So, we are having a random sample from Poisson theta and we

need to make certain inference about, say the mean of the Poisson distribution, that is,

theta here. But here, if we see, the sufficient statistics is sigma x i and that will follow

Poisson n theta.



Now, as we gave argument in the normal distribution making an inference about n theta

is  same as  making an inference  about  theta  and here,  especially  we are  considering

estimation with respect to the squared error loss function. So, the criteria for Bayesian

minimaxity,  minimum  variance  unbiased  estimator  invariance,  etcetera,  will  not  be

changed if I replace the problem of estimation of n theta by theta or theta by n theta. So,

we can reduce the model to Poisson theta x following Poisson theta, theta greater than 0.

So, here the distribution of x, which we write as the conditional distribution of x given

theta is E to the power minus theta, theta to the power x by x factorial x is equal to 0, 1, 2

and so on. We consider the prior distribution for theta to be, let me use a notation pi

alpha beta, this is as a gamma distribution with parameters alpha and beta, that means,

we are assuming the density function to be 1 by gamma alpha beta to the power alpha, E

to the power minus theta by beta, theta to the power alpha minus 1. Here, an alpha and

beta are known positive constants here.

Now, here, the distribution of x is discreet and the distribution of theta, that is continuous

here. So, the joint distribution of x and theta, it is actually a mixture because x is discreet

and theta is continuous, so this is equal to product of f x theta into g theta. So, these are

the constant terms, like gamma, alpha, beta to the power alpha, etcetera.

Then,  the terms of theta  should be combined.  So, what  we do? We write  it  as 1 by

gamma alpha beta to the power alpha x factorial E to the power minus beta plus 1 by

beta theta, theta to the power alpha plus x minus 1. Here, theta is greater than 0 and x is

equal to 0, 1, 2 and so on.
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So, the marginal distribution of x can be easily obtained, that is obtained by integrating.

Now, this becomes simply a gamma function, so the integral can be easily obtained. So,

applying the formula for the gamma function we get the value of this integral as 1 by

gamma, alpha, beta to the power alpha x factorial gamma of alpha plus x into beta by

beta plus 1 to the power alpha plus x here. Here x takes values 0, 1, 2 and so on.

So, this is the probability mass function of x and therefore, the posterior density function

of theta given x is obtained as f star x theta divided by h x. So, when we take the ratio

these terms get cancelled out and the remaining quantity we get as 1 by gamma alpha

plus x divided by beta by beta plus 1 to the power alpha plus x E to the power minus beta

plus 1 by beta theta,  theta to the power alpha plus x minus 1. This is nothing, but a

gamma distribution with parameters alpha plus x and beta by beta plus 1. In fact, this is a

phenomenon, which is like we are saying that the prior distribution is gamma and the

posterior distribution is also gamma. Earlier we took the normal distribution as the prior

in the normal case and posterior was also normal, these are called conjugate priors.

So, when we are dealing with the Poisson distribution, gamma is a conjugate prior for the

average of the Poisson distribution. Similarly, for the normal distribution, for the mean

the  normal  distribution  itself  is  a  conjugate  prior.  Similarly,  like  in  a  binomial

distribution, we get binomial beta distribution as a conjugate prior because there if we

take beta, then the posterior will also be beta and similarly, in many other distributions.



It is convenient to work with the conjugate priors in the sense, that easily the form of the

base estimators can be derived and secondly, in the limiting sense, in many cases this

lead to the extended Bayes rules and also the minimax rules.

So, now, here you can notice, here we have got it as a gamma distribution. Now, if I

have, say gamma, say alpha beta distribution, then the mean is alpha beta; the variance is

alpha beta square. The 2nd moment, for example, if I say, fine, so, so here the Bayes

estimator  with respect to the squared error loss function is the mean of the posterior

distribution. So, that is equal to, let me name the estimator as delta alpha beta, so that is

we got alpha plus x into beta by beta plus 1. So, you can write the Bayes estimator as

beta by beta plus 1 into alpha plus x.

Further, you notice here, if I take here the limit as alpha tending to 0 and beta tending to

infinity,  then  this  will  converge  to  X.  Now, in  the  case  of  Poisson  distribution  the

maximum likelihood estimator is x bar and of course, we have shifted the problem. So,

X, X is the m L E, it is also the unbiased estimator and this turns out to be the limit of the

Bayes rules.
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So, so X is the limit of Bayes rules or Bayes estimators. Let us consider, say pi theta is

equal to 1 by theta, theta greater than 0. This is an improper prior, if we take this as the

improper prior, then the corresponding joint distribution will be equal to E to the power

minus theta, theta to the power x minus 1 by x factorial.



Then, the marginal distribution of x, that will be obtained as gamma x by x factorial

because that is obtained by integrating this with respect to theta. So, you get gamma x,

that is equal to 1 by x and of course, this will be from x equal to 1, 2 and so on because at

x equal to 0, this does not make sense here.

So, g star theta given x, that turns out to be E to the power minus theta theta to the power

x minus 1 by x minus 1 factorial, that is actually gamma x, 1 distribution. So, if you look

at the expectation of theta given x, that is, the generalized Bayes estimator is given by x.

So, x is the generalized Bayes estimator.

Further, we will see, whether it is an extended Bayes estimator. We further try to prove,

that delta g b, that is equal to x is an extended Bayes estimator. Now, in order to take the

extended  Bayes  estimator  we  need  the  sequence  of  priors.  Now,  already  we  have

considered the sequence of prior as gamma alpha beta distributions.
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Now, with respect to that let us calculate the infimum and other quantities, minimum

Bayes risk, etcetera. So, first of all consider prior, that pi alpha beta, that is, gamma alpha

beta. So, risk of X, that is, expectation of X minus theta square, that is equal to 1, sorry,

that is equal to theta. Therefore, the Bayes risk of x, that will be expectation of theta, that

will be equal to alpha beta.



Now, let us consider the Bayes risk of the Bayes estimator, that is, the minimum Bayes

risk that is equal to expectation of expectation alpha plus x into beta by beta plus 1 minus

theta square. Now, here we can consider any order theta given x and then, x or x given

theta and then theta. So, let me take this case here. So, this becomes expectation of theta

expectation of x given theta. See, here, x given theta follows a Poisson distribution, so

we will make use of that thing here. So, this term we express as beta by beta plus 1 x

minus theta plus alpha beta minus theta by beta plus 1.

Now, if  I  take expectations  here,  then this  term becomes beta  square by beta  plus 1

square x minus theta square. The 2nd term is constant with respect to x, so this becomes

simply alpha beta minus theta square by beta plus 1 square plus twice alpha beta minus

theta by beta plus 1 expectation of x given theta beta by beta plus 1 x minus theta.

Now, note here, that when I am considering conditional expectation with respect to x

given theta, then the expectation of x is equal to theta. So, this term vanishes, this is

constant and here, it will become variance of x. Variance of x is again theta, so this turns

out to be simply expectation beta square theta  by beta plus 1 square plus alpha beta

minus theta square by beta plus 1 square.

Now, here,  we have to take the expectation  with respect  to the distribution  of theta,

which is gamma alpha beta. So, expectation of theta is alpha beta and this term becomes

expectation of theta minus alpha beta square. Now, alpha beta is the mean of theta, so

this  becomes variance of theta.  The variance of the gamma alpha beta distribution is

alpha beta square. So, this turns out to be beta square alpha beta plus variance of this,

that is, alpha beta square divided by beta plus 1 square. So, here we can take common

alpha beta square, so we get alpha beta square by beta plus 1.
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So, now, if we write down the condition alpha beta, that is, r pi alpha beta delta g b, that

is, x less than or equal to infimum r pi alpha beta delta plus epsilon. This condition is

equivalent to same, alpha beta is less than or equal to alpha beta square by beta plus 1

plus epsilon, which is equivalent to same, epsilon is greater than or equal to alpha beta

by beta  plus  1,  which is  possible  for  every epsilon  greater  than 0,  if  we take alpha

tending to 0 and beta tending to infinity. So, X is an extended Bayes rule.

Let us also explore the possibility, that X can be minimax here or not. Then, the 1st

problem that we notice here, that X is having the risk equal to theta and if I take the

supremum value  here,  that  becomes infinite.  Therefore,  at  least,  here X cannot  be a

Bayes rule. However, if I had taken the loss function where I had divided by theta, then

this would have become constant. Of course, in that case the Bayes rule will change, and

whether the new rule will remain generalized Bayes or extended Bayes also we have to

see.

So,  let  us  try  that  thing  here  because  in  this  case  the  supremum risk  is  infinite,  so

certainly this cannot be minimax. So, we will consider modification of the loss function

here; consider modified loss function. Let us call it L star, that is equal to theta minus a

square by theta.

Let us look at all the other things here. So, r theta x, that becomes 1. Let us still consider

the prior pi alpha beta as say, g alpha beta if I take,  then posterior has already been



calculated, that is, theta given x was following gamma with parameters alpha plus x and

beta by beta plus 1.

However, the form of the Bayes estimator  will  change.  Now, the form of the Bayes

estimator  is,  now so,  if  you apply  the  formula  expectation  of  theta  into  w theta  by

expectation of w theta, then that is equal to, now here w theta is 1 by theta, so this in the

numerator you get 1 and in the denominator you get 1 by theta given x is equal x. Now,

so the numerator is 1 and expectation of 1 by theta when theta given x follows alpha plus

x beta by beta plus 1 gamma density, then that can be calculated here.
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So, expectation of 1 by theta given x is equal to x, that is equal to integral 1 by gamma

alpha plus x beta by beta plus 1 to the power alpha plus x e to the power minus beta plus

1 by beta theta and theta to the power alpha plus x minus 2. So, this is again a gamma

function and the form is gamma alpha plus x minus 1 into beta by beta plus 1 to the

power alpha plus x minus 1 divided by gamma alpha plus x beta by beta plus 1 to the

power alpha plus x. So, that turns out to be then beta plus 1 by beta alpha plus x minus 1.

So, the Bayes estimator delta star alpha beta, that is equal to 1 by this quantity, that is

beta plus 1 by beta alpha plus x minus 1, that is equal to beta by beta plus 1 alpha plus x

minus 1. Now, here also you can see that this will converge to x as alpha tends to 1 and

beta tends to infinity. So, x is still a, x is still a limit of Bayes rules and we can also see,

whether it is extended Bayes or not.



Let us calculate the risk function. So, expectation of beta alpha plus x minus 1 by beta

plus 1 minus theta square, that is equal to expectation of, once again here I will calculate

this with respect to the distribution of x. So, this we adjust here, this is equal to beta by

beta plus 1 x minus theta plus beta alpha minus 1 minus beta theta by beta plus 1 square.

So, that is equal to beta square by beta plus 1 square expectation of x minus theta square

plus this constant square, that is, beta alpha minus 1 minus beta theta by beta plus 1

square. Once again the cross product term will become 0 because expectation of x is

equal to theta. So, in the cross product this will be out and expectation of this will give 0,

so we do not write that term here.
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And we get here, that is equal to beta square by beta plus 1 square into theta plus alpha

beta minus theta minus beta. This term is actually equal to theta here. So, this is actually

risk of the Bayes estimator delta star alpha beta.

So, if I calculate the Bayes risk with respect to the prior delta alpha beta, pi alpha beta,

then it is the risk of this Bayes estimator that is equal to expectation with respect to theta

of this quantity. Now, this will involve the mean and the variance of the distribution of

theta. The distribution of theta is gamma alpha beta, the mean is alpha beta, the variance

is alpha beta square, so we get this term as equal to beta square alpha beta plus.

Now, in the second one, again I expand this, this is variance, that is alpha beta square

plus beta square divided by beta plus 1 square. If we take out beta square here, we get 1



plus alpha plus alpha beta divided by beta plus 1 square. Of course, we can notice here,

this goes to 1 as beta tends to infinity and alpha tends to 0.

So, so we can see, that here, let us also look at the, we had r theta x is equal to 1 and this

is less than or equal to the limit of r pi alpha beta delta star, alpha beta limit is taken as

alpha tends to 0 and beta tends to infinity, so x is minimax…

So, here you can see, that by making an equalizer estimator I am able to convert x as a

minimax estimator. In the loss function when I  considered squared error, then I  was

getting the risk as theta and therefore, the supremum was infinite, but if I divided by

theta  here,  the risk became constant  and as a consequence x has become a minimax

estimator here. Of course, one can still  prove, that it  will remain a, it will remain an

extended Bayes rule etcetera, but that we are skipping right now here.

In  a  similar  way  we  can  consider,  we  can  consider  the  relation  of  invariance.  For

example, in order to find out the minimax rule, we can restrict attention to the class of

invariant rules. If we can find out the best invariant rules, then it is actually the minimax

rule in the class of invariant estimators. Then, under certain conditions this rule will be

minimax over all.

Now, some simple cases are, like if I consider a finite group of transformations or a

compact group of transformations, in that case the result is straightforward. However, if

the group of transformations is not necessarily finite or compact, that means, in general,

it could be a locally compact group. Then, there are certain conditions under which it can

be proved that the best  invariant  rule are the minimax invariant  estimator  is  actually

minimax over all. In a similar way we have the result, that if we can find out Bayes rule

or Bayes estimator within the class of invariant rules, then it will be Bayes over all. We

can find out admissible rule within the class of invariant rules, then it will be admissible

over all.

So, many of these results are now part of the standard estimation theory, I am not going

to discuss this in detail here. I will still consider few more examples of non-conventional

cases for deriving the Bayes rules, the limit of Bayes rules, the generalized Bayes rules,

etcetera.
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So,  let  us  take  another  non-conventional  example.  Let  us  consider  say  x  following

uniform distribution on the interval theta to theta plus 1, where theta is any real number

and we are considering the loss function to be squared error.

Firstly, let us understand this problem. Here, if I take expectation of x, that is equal to

theta plus 1 by 2, that means, x minus 1 by 2. Let us write it as delta naught, this is

unbiased and of course, it will become because here I am taking only one observation.

So, this is also MVUE here. And if I consider the maximum likelihood estimator, the

maximum likelihood estimator will be any value between x minus 1 to x and that again,

we can take the mid value, this is also an MLE, although MLE is not unique in this

problem.

Now, let us consider certain things here. Let us first take prior, say g eta theta that is

equal to 1 by twice eta, where eta is fixed constant. That means, I am considering the

prior distribution for theta to be a uniform distribution on the interval minus eta to eta.

Now, with this one let us calculate here the Bayes rule. So, the joint distribution, the joint

density of x and theta is, it is equal to 1 by 2 eta because here the density of x, that will

be equal to 1 for x lying between theta to theta plus 1. So, this product becomes same

and the reason is here we can say maximum of minus eta x minus 1 less than or equal to

theta less than or equal to minimum of eta and x, it  is equal to 0 elsewhere. So, the



marginal distribution of x, that is, minimum of eta x minus maximum of minus eta x

minus 1 divided by twice eta.

(Refer Slide Time: 44:17)

And therefore, the posterior distribution, the posterior density of theta given x, then that

is obtained as 1 by minimum of eta x minus maximum of minus eta x minus 1 for theta

lying between maximum of minus eta x minus 1 less than or equal to theta less than or

equal to minimum of eta x, which is actually a uniformed distribution.

So,  here,  for  this  model  of  uniformed  distribution,  actually  another  uniformed

distribution is the conjugate prior and therefore, the Bayes estimator of theta is the mean,

so that is nothing, but the midpoint here, that is, minimum of eta x plus maximum of

minus eta x minus 1 divided by 2, we can actually write it as, that is fine. Now, as eta

tends to infinity, this will tend to x minus 1 by 2 as eta tends to infinity.

Now, let  us  also see,  so this  x  minus half,  this  is  limit  of  Bayes  rules.  Let  us  take

improper prior, say, h theta is equal to, g theta is equal to 1 for theta belonging to the real

line. In that case, f star x theta will be 1 for x minus 1 less than or equal to theta less than

or equal to x 0 elsewhere. And the marginal will turn out to be again 1 for x belonging to

r and therefore, the posterior will be equal to 1. And therefore, the generalized Bayes

estimator is the mean of this distribution, that is, x minus half.



So,  in  this  particular  problem also  we are  able  to  get  the  limit  of  Bayes  rules.  The

generalized Bayes rules, of course, I leave it as an exercise to check whether it will also

be an extended Bayes rule or not. The question regarding whether it will be minimax,

can also be tried. So, this part I am leaving as an exercise.

Now, now quite often there is a dispute, that whether we have one prior or another prior

distribution, then one can actually calculate Bayes estimators with respect to the different

priors and then,  one can compare the risk functions with respect  to a particular  loss

function and then see, which one performs better.

However, if we consider Bayes estimators with respect to different loss functions, even

though you may take the same prior distribution, then you cannot compare them on the

same scale. It could be, then with respect to, certainly because with respect to one loss

function, one of them is the Bayes. That means, it is having the minimum Bayes risk and

the other one is having minimum Bayes risk with respect to another loss function. So, the

direct  comparison is  not possible.  However, you may fix  one loss function and then

compare. In that case, deriving the Bayes estimators with respect to different priors or

with respect to different loss functions is only a method of arriving at good estimators. I

will illustrate this with respect to one problem here.
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Let us take, say x, following uniform 0 theta once again and here, I consider one prior as

g 1 theta, that is equal to theta to the power alpha, sorry, alpha and say, beta to the power



alpha divided by theta to the power alpha plus 1. Here, theta is greater than or equal to

beta, here f is 1 by theta and g 2 theta. Let us take as, say theta by beta square e to the

power minus theta by beta.

Now, in this case, we get two different Bayes estimators. If we take loss function, say

theta minus a square by say theta square, one can compare the risk functions of both

estimators with respect to this loss function. So, this part I leave as an exercise for you to

work out.

Now, what we have discussed so far, how to, we have introduced the optimality criteria,

one of them we call Bayes and another one we call minimax. We have shown, that using

the different criteria you may arrive at different estimators, but then one of the criteria is

utilized  to  derive  the  other  set  of  estimators  here  and  therefore,  there  is  a  deep

interrelationship between these concepts.

The other concept that is of admissibility is also closely related with that I have already

introduced, the admissible estimator, that an estimator is said to be admissible if there is

no estimator, which is better  than the given estimator. Certainly, then the class of all

admissible  estimators  is  a  desirable  class  and  in  the  decision  theory  we  call  it  an

essentially complete class. In fact, it is the minimal complete class and therefore, it is

desirable  in  any  given  estimation  problem  to  restrict  attention  to  the  admissible

estimators.

Now, proving admissibility or deriving admissible estimators directly is more difficult,

so there is a direct interrelationship. In fact, the Bayes rules or the Bayes estimators are

shown to be admissible under certain conditions.  Conversely, all  admissible rules are

shown to be either Bayes estimators or limit of Bayes estimators and in that sense, if we

consider the Bayes estimators, we are actually dealing with the good estimators.

Now,  this  is  one  of  the  things  because  of  which  the  Bayesian  rules  or  Bayesian

procedures or Bayesian estimators are considered to be very frequently used in present

day. And further, with the advent of computational techniques one can easily evaluate the

Bayesian  procedures  because  many  times  the  form,  the  Bayes  estimator  may  be

complicated, but because of the computational procedures of level one can evaluate those

things.



So, the advanced topics in Bayesian estimation and the minimax estimation relate  to

these concepts. In Bayesian estimation we have further topics, such as empirical Bayes.

For example, the parameters of the prior itself may not be known. In that case, we can

calculate the marginal distribution of x.

Now, that marginal distribution of x will include the prior, the parameter of the prior

distribution, then we use the data to estimate that and when we consider the form of the

Bayes estimator, we substitute the estimator for that parameter of the prior distribution

from  that  data.  This  is  called  empirical  Bayes  estimator.  Some  of  the  prominent

estimators, such as James Stein estimator, etcetera have been shown to be empirical base

estimators.

Then, there is also concept of hierarchical Bayes estimators where we may consider a

sequence  of  priors.  For  example,  a  prior  distribution  has  a  parameter.  Now,  that

parameter is unknown, therefore we treat this as a random variable. We take further prior

for that, so in that case, if we are, these are called hierarchical Bayesian procedures.

So, the Bayesian theory is rich theory and one can look into advanced topics of this. So, I

stop my, I close the estimation part of this course today here. From the next lectures we

will be considering the testing of hypothesis that is another important component of the

statistical inference.


