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So far the testing procedure that we have discussed was based on the Neyman Pearson

fundamental lemma. The main assumption that we made in deriving the test procedure

was that the null hypothesis and the alternative hypothesis both were considered to be

simple; and in this case, when we fix the probability of type one error, then we were able

to derive the test  which is  having the minimum probability  of type two error or the

maximum power, and we called it the most powerful test. However, in most of the real

life situations, we do not come across the simple hypothesis verses simple hypothesis

problems. In most of the complex situations, we have composite hypothesis.
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As a very simple case, we may have the family of distributions as normal mu sigma

square distributions,  and we may like to even now we may like to test something like,

whether mu naught mu is equal to zero or mu is not equal to zero. Note here that, now



this H naught is not a simple hypothesis; this is composite, because sigma is square is

unknown. Here we have assumed both parameters to be unknown; both parameters are

unknown. Therefore these are now composite both hypothesis are composite hypothesis.

And therefore, the Neyman Pearson lemma does not help us to give a solution in this

particular problem; that means, does not give a most powerful test.

The simplest composite hypothesis are of this nature, that we may have a one parameter

family, say family of distribution with one parameter theta say effects theta. And we may

like to test about, say h naught theta less than or equal to theta naught against say theta

greater than theta naught, or alternative we may have say h naught theta greater than or

equal to theta naught against h 1 theta less than theta naught. 

Now, let  us  remember  our  cases  that  some  examples  we  consider  for  the  Neyman

Pearson lemma, where we had considered theta is equal to theta naught against theta is

equal to theta 1. I had consider two cases; one was theta naught less than theta 1, and

another was theta naught greater than theta 1. When theta naught was less than theta 1,

we got a one sided testing region; that is the rejection region, that is for larger values of

expire we were rejecting h naught. 

Now, in that problem, in place of theta 1 suppose we replaced by another value theta 2,

suppose we replace by another value theta 3, the testing procedure remains the same as

longer this second value in the alternative hypothesis remains larger than theta naught. In

a similar way if we are considering the reverse case theta naught greater than theta 1,

then the rejection region was for is smaller values of x bar, and once again if we replace

this  alternative  hypothesis  theta  1  in  the  same direction;  that  means,  value  which  is

greater than theta naught or less than theta naught, then the rejection region does not get

effected.  What does it mean? It means, that for those values we are getting the most

powerful  tests;  that  means,  this  normal  distribution  with  one  parameter,  the  second

parameter sigma was considered to be known has certain property.

Now, in these situations for the changing values we get the maximum power at each of

the values, this is called uniformly most powerful test.  Now, this family distributions

which will satisfy this property; that means, where we will get such test; it is having

some particular name, it is call the family’s with monotone likelihood ratio property. In

particular, for the one sided testing of hypothesis problems like theta less than are equal



to theta naught against theta greater than theta naught, or theta greater than or equal to

theta naught against theta less than theta naught etcetera, For such cases we are actually

getting the uniformly most powerful test. The result that are proved, their actually you

can say they are extension of the Neyman Pearson fundamental lemma.

So Firstly, let me define this family’s, so let f x theta be a probability mass function or

density  function of a  random variable  say x,  let  us write  down the ratio  f  x theta  1

divided by f x theta 2, let us call this name; this ratio let me call it r x. And let us takes a

theta 1 greater than theta 2, if r x is an increasing function of some variables say T x,

then we say that the family of densities. 
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The word densities means, it in includes the probability mass functions. So, that is f x

theta, theta belonging to the parameter is phase has monotone likelihood ratio, that we

call MLR in theta T x. Let me given example here, let us consider say x following a

normal  distribution  with  mean  theta  and  known  variants  1,  let  us  write  down  the

distribution f x theta is 1 by root two pi e to the power minus half x minus theta square.

Let us consider this ratio r x, that is f x theta 1 divided by f x theta 2, now when we write

this ratio this gets cancelled out, and you have e to the power minus half x minus theta 1

square plus half x minus theta 2 square, that is equal to e to the power half theta 2 square

minus theta 1 square, and then you will have plus theta 1 minus theta 2 x.



So, you can look at this, this is an increasing function if i am taking increasing function

of x, if theta 1 is greater than theta 2 because this is constant, and if theta 1 is greater than

theta 2 e to the power this becomes an increasing a function of x. So, this family of

distributions  normal  theta  1;  where  theta  belongs  to  real  line,  this  has  monotone

likelihood ratio in theta and x.

Now, i have return here the distribution of one observation, suppose in place of x i have x

1 x 2 x n.  suppose i have x 1 x 2 x n In this case, f x theta we have to write the joint

distribution of x 1 x 2 x n, so the joint density of x 1 x 2 x n. So, let me give the notation

f x, where x is standing for the values x 1 x 2 x n of capital X 1 capital X 2 capital X N.

So, this becomes 1 by root 2 pi to the power n e to the power minus 1 by 2 sigma x i

minus theta is square.

Let us simplify this, we can write it as 1 by root 2 pi to the power n e to power minus

half sigma x i square minus n theta square by 2 plus, now you have the cross product

term twice x i theta  with minus sign, and minus minus will become plus and 2 will

cancel out. So, you get twice n x bar theta, where x bar is the 1 by n sigma x i.
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So, now you write down this ratio f x theta 1 divided by f x theta 2, that is turning out to

be, now, when you write the ratio, this constant determinate get cancelled out e to the

power minus half sigma x i square will get cancelled out, we will be left with e to the

power n by 2 theta 2 square minus theta 1 square plus n x bar theta 1 minus theta 2. Now,



this is constant, for theta 1 greater than theta 2 this becomes an increasing function of x

bar, so this ratio and increasing function of T x is equal to x bar when theta 1 is greater

than  theta  2.  So,  this  family  of  distribution  normal  theta  1,  when  we  are  having  n

observations, so we have MLR in theta and x bar we can say. Now, the similar thing we

can observe for various distributions; let me give a couple of more examples, here i have

considered the normal distribution when the variances assume to be known. Now, there

can be a other case where mean may be known and the variance may be unknown, let us

state  that  case,  let  me  again  consider  say  1  observation  and  then  I  will  consider  n

observations, generally we are dealing with the sample.

So, let me taking this case, here sigma square is positive parameter, if we consider the

density function here; it is 1 by sigma root 2 pi into the power minus x square by 2 sigma

is square, where x is any real number. Therefore, if I consider the ratio f x sigma 1 square

divided by f x sigma 2 square, now this when will give me sigma 2 by sigma 1, this 1 by

root two pi will get cancelled out e to the power x square by 2 1 by sigma 2 square minus

1 by sigma 1 square. Now, let us takes a sigma 1 square greater than sigma 2 square; that

means,  1 by sigma 1 square is less than 1 by sigma 2 square.  So, this term because

positive and therefore, this is increasing function of x square, so this family of normal

zero sigma square distributions, this has monotone likelihood ratio in sigma square x

square.
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Now, not here, that suppose I take a sample here in place of x, let us take sample x 1 x 2

x n following normal zero sigma x square, and let us write down the same thing of once

again. The joint distribution; the joint density of x 1 x 2 x n, that will become 1 by sigma

root 2 pi to the power then e to the power minus sigma x i square by 2 x square, where

sigma x square is positive and each x i’s on the real line. So, when we write down the

ratio, now this term get cancel out will get sigma 2 by sigma 1 to the power n e to the

power minus sigma x i square by 2 1 by sigma 2 square minus 1 by sigma 1 square, so

this i will put plus here. Once again, you not here this is positive if sigma 1 square is less

than sigma 2 square Sorry. Now, if sigma 1 square is greater than sigma 2 is square, then

this term becomes positive, so this is increasing in sigma x i square, that we will call T x.

So, this family has monotone likelihood ratio in sigma square and sigma x i square. Now,

this T x has a special role, then we will derive the uniformly most powerful test; you will

see that the test will depend upon this itself. So, I will discuss a few more applications

little later; let us look at the main result of this section of now, that is as an application of

the monotone likelihood ratio property. How the uniformly most powerful test exist?

(Refer Slide Time: 15:06)

So, I state the theorem; for a proper statement of this theorem you may look at the books

of Lehmann and Romano 2005, or you may look at Rohatgi and Selah, the proofs are

also given there. So, I am not discussing the proof here.



So,  let  us  consider,  let  the  random  variable  x  have  probability  mass  function  or

probability density function, say f x theta with monotone likelihood ratio in theta T x,

And of course, here theta is a real parameter; theta belongs to say theta which is subset of

the real line.

So, the result that we are having here is that, for testing h naught theta less than or equal

to theta naught against h one theta greater than theta naught, there exists a uniformly

most powerful test; that is, u m p test given by as before we will use phi notation for the

test function. So, you reject if T x is greater than c, you reject with probability gamma if

T x is equal to c, and you accept if T x less than c. Where c and this gamma r determined

by expectation of theta naught phi x is equal to alpha, let me call this conditions one and

two,  note  here that  similarity  with  Neyman Pearson lemma,  in  the Neyman Pearson

lemma we had return f  1 by f  naught greater  than k.  Now, if  f  1 by f  naught is  an

increasing function of T x, then that region is transformed to T x greater than c. So, it is

as I mentioned, it is direct extension of the Neyman Pearson fundamental lemma only,

the result is coming from there. The power function; that is, we have use the notation say

beta is star theta,  that is equal to expectation theta phi x is strictly increasing for all

points theta for which it lies between zero and 1.
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For all theta star, the test determined by 1 and 2 is uniformly most powerful for testing h

prime theta less than or equal to theta prime against k prime theta greater than theta



prime at level say alpha prime is equal to, let me put star here, this mu hypothesis I am

calling h naught and h 1 star at alpha star is equal to beta star of theta star. And for n e

theta less than theta naught, the test minimizes beta star theta among all tests satisfying

the condition 2. I will skip the proof here; one can look at the book of Lehmann for the

detailed proof of this is statements. 

Now, one may not here, I have considered theta less than or equal to theta naught against

theta greater than theta naught. As I gave the heuristic argument, that in the Neyman

Pearson lemma,  and as I  also I  give the normal  distribution  example when we were

testing for the mean, the rejection region for the larger value of x bar, and here it is for

the larger value of T x. So, if we reverse, like for the null hypothesis region we consider

greater, and for the null alternative hypothesis we consider less than or equal to, then the

rejection region will also get the reverse. So, what I just give it as a comment here, if we

considered the say dual problem h naught theta greater than or equal to theta naught

against h 1 theta less than theta naught, the inequalities in 1 get reversed. So, you have

the solution in a similar manner way.

Let me take an application here, say we have a random sample say x 1 x 2 x n from say

poison lambda distribution, and we consider say hypothesis lambda less than or equal to

say lambda naught against say lambda greater than lambda naught. Now, let us look at

this family of poison distributions, whether it as monotone likelihood ratio or not. So, the

joint probability mass function of x 1 x 2 x n, so we write it as f x lambda product i is

equal to 1 to n e to the power minus lambda lambda to the power x i by x i factorial, that

is equal to e to the power minus n lambda lambda to the power sigma x i divided by

product x i factorial.
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So, if we consider the ratio for lambda 1 greater than lambda 2, let us consider the ratio f

x lambda 1 by f x lambda 2. So, it is becoming e to the power minus n lambda 1 lambda

1 to the power sigma x i divided by product x i factorial divided by e to the power minus

n lambda 2 lambda 2 to the power sigma x i, and this term will get cancelled out.

So, we can write it in a simplified fashion as, lambda 2 minus lambda 1 lambda 1 by

lambda 2 the power sigma x i. This lambda 1 by lambda 2 is greater than 1, because

lambda 1 is greater than lambda 2 therefore, this will become an increasing function, this

is an increasing function in T x is equal to sigma x i. So, we have monotone likelihood

ratio in lambda and sigma x i.

So, we can apply the theorem that i gave, if the family has monotone likelihood ratio and

theta and T x, then for one sided null hypothesis verses one sided alternative hypothesis

the uniformly most powerful test is obtained here. So, let me write it here, so the UMP

test is given by phi x; this here x means x 1 x 2 x n, it is rejecting if sigma x i is greater

than c, it is rejecting with probability gamma if sigma x i is equal to c, it is zero if sigma

x i is less than c.

Now, the sigma x i is actually, let me write say it has equal to y then that will follow

poison  distribution  n  lambda.  Now,  c  and  gamma  r  determined  by  the  condition

expectation of the lambda naught phi x is equal to alpha, now this is reducing to, let me

write it as a one and this as two, so this condition to let me simplify. 
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The condition two .So, expectation of lambda naught phi x, since this phi x is completely

dependent upon sigma x i that is y, so it is becoming probability of y greater than c plus

gamma times probability of y is equal to c, this is equal to alpha when the true parameter

value is lambda naught. Now, another point which I would like to explain here, in the

case of simple verses simple hypothesis we had the probability of type one error as a

single value, but when we have composite hypothesis for the null hypothesis, then the

probability of type one error is a function.

However,  this  is  an  increasing  function  which  i  mentioned  in  the  statement  of  the

theorem also, that the power function is strictly increasing function, so the probability of

type one error is increasing. So, when you are getting theta is equal to theta naught, then

at that point the maximum value is adoptant. So, effectively this condition is actually the

size condition  that  is  expectation  of  phi  x equal  to alpha  lambda naught,  this  is  the

maximum probability of type one error here, that we are fixing to be equal to alpha. So,

the size condition now, it is reduced to a condition which is involving the distribution

poison n lambda naught therefore,  from the tables of the poison distribution one can

calculate this. Suppose, I say lambda naught is equal to 1, and n is equal to say phi, then

basically we are looking at the tables of poison phi distribution. Suppose, I say alpha is

equal  to  0.1,  then  basically  what  we are  seeing  here  is  that  what  is  the  point  from

where… Now, the c could be; need not be an integer actually, we may fix that thing in



such a way, if it is an integer then this value may be positive, if it is naught integer then

this may become zero.

Now, you may see  from the  tables  that  whether  this  randomization  with probability

gamma is required or not, if it is not required then this probability can be taken to be

zero, there will be a point where after you will have the probability alpha. In case, that is

naught possible, then we suitably choose a value where we lot of probability and then we

may give some value of gamma also.

So,  now this  can be calculated  from the tables  of  the  from the tables  of  the poison

distribution.  We can also  see  like  a  binomial  distribution,  we suppose we are  hyper

geometric distribution, suppose we have negative binomial distribution, in all of these

distributions we are able to find out the uniformly most powerful tests. I will consider

this derivation of the test in the following lecture; let me further develop this theory of

the UMP tests here.

So, let us consider one parameter exponential family, so we are considering the form of

the probability mass function or the probability density function as c theta e to the power

Q theta T x n two h x. Here Q function is strictly monotonic function; that means, it

could be monotonically increasing or monotonically decreasing. Let us write down the

ratio f x theta 1 by f x theta 2, then this is becoming c theta 1 e to the power Q theta 1

minus Q theta 2, T x and h x will get cancelled out by c theta 2.
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If Q is monotonically increasing, then theta 1 greater than theta 2 will imply Q theta 1

greater than Q theta 2; that means, this term will become positive, and you will have this

as increasing function of increasing function of T x. So, this ratio becomes an increasing

function of T x, so the family f x theta; this will have monotone likelihood ratio in theta

T x. On the other hand, if I consider say Q theta 2 be monotonically decreasing,  if Q

theta is monotonically decreasing then this r x term, what will happen here? That Q theta

1 will become less than Q theta 2, if theta 1 is greater than theta 2 therefore, this term

will become decreasing function of T x, and therefore, monotone likelihood ratio will be

in minus T x; decreasing in T x, so MLR will be in theta and minus T x; that means, the

test function will get reversed, inequalities like here we are T x greater than c you will it

will become T x less than c. 

So, as a corollary of the previous theorem, we can write then let x have a probability

density in one parameter exponential family, that is f x theta is equal to c theta e to the

power Q theta T x into h x, where Q is monotonic function then there exist a UMP test

for h naught  theta  less than or equal  to  theta  naught against  theta  greater  than theta

naught. If Q is increasing, the test is of the form phi 1 x is equal to 1, if T x is greater

than c if T x is equal to c it is zero if T x is less than c, if Q is decreasing the inequalities

will get reversed, and here c and gamma are determined by expectation of theta naught

phi 1 x is equal to f 1.
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Let  me  consider  one  example,  let  x  1  x  2  x  n  be  a  random  sample  from  double

exponential distribution, with p d f given by say f x theta is equal to half e to the power

minus modulus x by theta and here 1 by 2 theta. Here x is a real number, and theta has to

be a positive  parameter  here,  let  us consider  say, theta  is  less than or equal  to theta

naught  against  theta  greater  than  theta  naught.  You can  easily  see that  this  is  a  one

parameter exponential family, and the monotone likelihood ratio; here you may consider

Q theta as equal to minus 1 by theta.

So, naturally this is increasing in theta because 1 by theta is decreasing, so minus 1 by

theta is increasing. So, this is strictly a monotonic function, so this suppose i write down

the joint distribution of x 1 x 2 x n, half x 1 x 2 x n that is equal to 1 by 2 theta to the

power n e to the power minus sigma, so monotone likelihood ratio in theta and sigma x i,

this is T x sigma modulus of x i. Therefore, by an application of this corollary that i

mentioned UMP test for this problem,
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Let us say reject h naught if sigma modulus of a x i is greater than c. Now, note here that

we are dealing with the continuous distributions, so I have returned this part only, this

part will be the acceptance region. Now, sigma of modulus x i is equal to c, we need not

write  this  portion  here  because  this  will  have  probability  zero,  so  without  lose  of

generality i am including the equality here.



Now, what we need to do is to determine this, where c is to be determined from the size

condition, that is expectation of phi x is equal to alpha. Now, let us consider say y i is

equal to modulus of x i, if x i is having double exponential distribution, then modulus of

x i will have simple exponential distribution, that is 1 by theta e to the power minus y i

by theta. So, this will have distribution 1 by theta e to the power minus y i by theta.

So, sigma modulus of x i by theta, that is y i sigma y i by theta that will have gamma

distribution  with parameters  n and 1;  that  means,  twice  sigma modulus  x i  by theta

naught, that will follows chi square distribution on 2 n degrees of freedom under theta is

equal to theta naught. So, when we consider this size condition, that is probability of

sigma modulus x i  by theta naught twice greater than or equal to some 2 c by theta

naught, this is equal to alpha when theta is equal to theta naught, this implies that this

two c by theta naught should be equal to chi square 2 n alpha; that means, on the chi

square curve with the 2 n degrees a freedom this probabilities equal to alpha, so this is

chi square 2 n alpha phi. 
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So, the test is written as, so the UMP test is reject H naught if twice sigma modulus x i

by theta naught is greater than or equal to chi square 2 n alpha; this is the UMP test of

size alpha, and of course, accept H naught if this is less. So, you can see this extension of

the Neyman Pearson theory to the family’s with the monotone likelihood ratio is helpful

in providing the uniformly most powerful tests for one sided testing problems. If the



families have monotonic likelihood ratio, we are able to directly use these things here,

and we are having exact test here; that means, once we have the observations, and we our

testing problem is clearly specified, then at a given level of significance we can provide

decision, whether we should accept a null hypothesis are not. On the other hand, if you

do not is specify alpha in advance, then we can find out the p value here.

Now, let me proceed further with this theory here. Now, for further extension of this

theory  of  most  powerful  tests,  a  generalization  of  the  Neyman Pearson fundamental

lemma was done. Let me state this results without any proof here, and these results are

used for solving further problem; that means, here we are considering theta less than are

equal to theta naught, so it is strictly one sided.

Now, there  can  be  cases  were  we  may  have  two  sided  also  for  example,  if  I  am

considering say I binomial proportion, whether it lies in a range or it is outside a range.

Now, if I say it is within a range then it is like an interval, but if you i say it is an outside

a range for example, I may say it is outside the interval 1 by 4 to 3 by 4; that means, I am

saying the hypothesis p less than or equal to 1 by 4 or p is greater than or equal to 3 by 4,

is a two sided thing. Now, in families with the monotone likelihood ratio etcetera, this

Neyman Pearson theory applicable to this also, and then there is another point; that is

regarding  the  determination  of  the  constant  in  the  test.  In  the  one  sided  thing,  the

maximum was occurring at the cut of point that is theta naught here, when we have two

sided then you will have two cut of points, it  will increase and then… So, what will

happen, that we will consider the maximum value at both the end points, that is at both

end points of the intervals.

So, these results are proved using a certain extended features of the Neyman Pearson

lemma. So, the result is known as the generalization of the fundamental lemma. let me

give  it  here  first  of  all,  a  generalization  of  the  fundamental  lemma  of  Neyman and

Pearson. This is statement and the proof one can find out in the book of Lehmann and

Romano, I will be skipping the details of the proof; I will only give the statement here.

Let  f  1 f  2 f  m plus 1 be real valued functions  defined on a Euclidean space x and

integrable mu, and suppose that there exists a critical function phi for given constants c 1

c 2 c n satisfying integral phi f i d mu is equal to c i i is equal to 1 to m. Let us say c is

the class of all critical functions phi satisfying 1. 



(Refer Slide Time: 45:26)

Then among all members of c there exists 1 that maximizes integral phi f m plus 1 d mu.

A sufficient condition for a member of c to maximize integral phi f m plus 1 d mu is the

existence of constants k 1 k 2 k n, such that phi x is equal to 1 when f m plus 1 x is

greater than sigma k i f i x i is equal to 1 to n, and it is equal to zero when it is less.

Thirdly, if a member of c satisfies 2 with k 1 k 2 k n greater than or equal to zero, then it

maximizes integral phi f m plus 1 d mu among all critical functions satisfying phi f i d

mu less than or equal to c i for i is equal to 1 to m.  
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And then lastly, the set m of points in the m dimensional space whose co-ordinates are

say phi f 1 d mu and so on, phi f m d mu for some critical function phi this is convex and

closed. If c 1 c 2 c n is the inner point of n, then there exist constants k 1 k 2 k n, and a

test phi satisfying 1 and 2 and a necessary condition for a member of c 2 maximized

integral phi f m plus 1 d mu is that 2 holds almost everywhere. As i mentioned i will not

be giving the proof of these results, one can see the book of Lehmann.

Now, this extension is helpful for solving more general testing problems, as a corollary I

state the following, let  p 1 p 2 p m plus 1 be probability densities with respect to a

measure mu, and let zero less than alpha less than 1, then there exists a test phi such that

expectation of phi x is equal to alpha for i is equal to 1 to n, and expectation of phi x for

m plus 1 it is greater than alpha unless of course, p m plus 1 is equal to sigma k i p i

almost everywhere. So, this will actually give the solution to more general two sided null

hypothesis testing problems.
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So, we have the following result than, that is if I am considering two sided hypothesis.

So, we can say that UMP tests also exists for certain to sided hypothesis of this nature h

naught, say theta less than or equal to theta 1 or theta greater than or equal to theta 2,

where theta 1 is less than theta 2. So, we may like to test whether for example, say theta

is the error measurements. So, we may like to check, whether the error measurements

like within a certain range or there outside the range. It could be like, we are producing

certain  items  and say  certain  ball  bearings  are  produced,  and we are  looking at  the

diameter of the ball bearings.

So, whether the ball bearings diameters are within a range a range or it is outside the

range. If it is within the range we will be excepting the product as the good item, if it is

outside then we will be rejecting that. So therefore, this is a perfect case for the two sided

testing hypothesis problems, we may have say H 1 as theta 1 less than theta less than

theta 2.

So, the result is that, by the use of the generalization of the Neyman Pearson fundamental

lemma, we can actually give the uniformly most powerful test for these situations also.

So, we have the following theorem, which I will the state,  let  x have the probability

density  function  with respect  to  a  measure  mu and Q is  strictly  monotone,  then  for

testing theta 1 theta less than or equal to theta 1 or theta greater than or equal to theta 2,

where theta 1 is less than theta 2 against the alternatives theta 1 less than theta less than



theta 2, there exists a uniformly most powerful test. Off course, here against c 1 has to be

less than c 2, it is gamma i if T x is equal to c i for i is equal to 1 2. So, there are two

points of randomization here, and we accept if T x is less than c 1 or T x is greater than c

2. Once again, if we are considering Q to be strictly monotone here, then the familiar

distribution  has  monotone  likelihood  ratio  in  theta  T  x  or  theta  minus  T  x  and

therefore…. 

So, here I would take an for example, increasing say because we are writing the region in

the rejection region in this one, so i am considering monotonically increasing. So, we are

rejecting when the value lies between two ranges, and we are accepting for a smaller

values of T x or larger values of T x. If it is decreasing, then the inequalities will get

reversed, and at the boundary points of the interval we have done the randomization. 
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So let me consider this as 1 this as 2 say, where this constants c 1 c 2 gamma 1 gamma 2,

they are determined by expectation theta 1 phi x is equal to expectation theta 2 phi x is

equal to alpha. This test minimizes expectation phi x subject to 3 for all theta less than

theta 1, and theta greater than theta 2. And for zero less than alpha less than 1, the power

function of this test has a maximum at a point theta naught between theta 1 and theta 2,

and decreases is strictly as theta tends away from theta naught in either direction, unless

of course, there exists 2 values; say s 1 and s 2, such that probability of T x is equal to s 1

plus probability of T x is equal to s 2 is equal to 1 for all theta.



So, here you can see the probability of type one error will be maximized at the end point;

that is, at theta 1 and theta 2, that is why we are fixing that value equal to alpha, so this is

the size condition in the two sided null hypothesis problem. When we have one sided

hypothesis problem, than the maximum value is occurring at the cut point; that cut of

point, where the null and alternative hypothesis points are changing. But when we have

two sided then will have two points; one is below and another is above, and at both the

points we are having the maximum value of the probability of type one error, that value

we  are  fixing  as  the  alpha  value.  In  the  next  lecture,  I  will  be  considering  further

amplification  of  these  results;  certain  applications  of  this,  and we will  also consider

certain properties of this power function here, which are based on actually the monotone

likelihood  ratio  property. So,  basically  their  properties  of  the  expectations,  I  will  be

discussing at in the next lecture. 


