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Basic Concepts of Point Estimations – II

In  last  lecture,  I  introduced  two  basic  concepts  of  point  estimation  namely  unbiased

estimation  and consistency.One of  the  properties  that  is  unbiasedness  it  is  related  to  the

estimator being equal to the true value on the average, that means if we have many samples

then the average of that will be equal to the true value.Whereas, consistency is a large sample

property that means if we take a sample to be large enough then the probability that it is close

enough to the true value of the parameter is almost equal to one.And so, the two properties

have somewhat different applications and as well as implications and many times we try to

combine various properties of the estimators.

So, I had shown in the last lecture some sort of invariance of the consistent estimators.For

example, if t is a consistent estimator for theta then g of t n, where g is a continuous function

will be consistent for g theta.Similarly, if I have t n to be consistent for theta and I have

sequences of numbers a n and b n, such is that a n converges to one and b n converges to zero

then a n t n plus b n also is a consistent estimator for theta.
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So, let me give a few examples, let us consider say let X 1 X 2 X n be a random sample from

an exponential distribution with a location parameter mu.That means, I am considering the

density function of say X i to be e to the power mu minus x where x is greater than mu and 0

otherwise.  So,  this  is  actually  the  well  known  shifted  exponential  distribution  here  mu

denotes  the  minimum guarantee  time  of  the  component  are  the  life.So,  here  if  you  see

expectation of X i is equal to mu plus 1. So, mu plus 1 is the first moment and therefore, if I

consider expectation of x bar that is also going to be mu plus 1. So, by weak law of large

numbers we get x bar as a consistent estimator for mu plus 1 and if I take 1 to the left hand

side then we get let me call it T 1 so T 1 is equal to X bar minus 1 is unbiased and consistent

for estimating mu that is a minimum guarantee time.
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Now, in this problem let me introduce another estimator,let us consider say Y is equal to X 1

here  this  X 1 denotes  the minimum of  the observations  X 1 X 2 X n 1 can  derive  the

distribution of X 1.In fact in general if I want to find out the distribution of this I can find it in

the following way I can either say c d f of this that is probability of X 1 less than or equal to

x.This can be written as 1 minus probability of X 1 greater than X that I can write as 1 minus

probability that now, if the minimum is greater than X this is equivalent to saying each of the

X i is are greater than X.Now, here X 1 X 2 X n a is a random sample therefore, X 1 X 2 X n

are independently and identically distributed random variables.

So, this can be actually written as 1 minus probability of X 1 greater than x into probability of

X 2 greater than x and so on probability of X n greater than x that is 1 minus probability of X

1 greater than x to the power n that is equal to 1 minus now, this is again 1 minus c d f of X 1

itself.Now,  if  I  have  this  as  the  probability  density  function  I  can  write  down  the

corresponding c d f here, that is integral from mu to x of e to the power mu minus t d t that is

equal to 1 minus e to the power mu minus x.So, if I substitute 1 minus e to the power mu

minus x here, I will get 1 minus e to the power n times mu minus x.So, the probability density

function of X 1 is now this can be obtained by considering derivative of this of course, this

value I have written for X greater than mu if x is less than mu then this is going to be zero.



(Refer Slide Time: 07:20)

So, if we consider derivative of this I will get the density function of X 1 as n time’s e to the

power n mu minus x where x is greater than mu. So, this is the probability density function of

the minimum of the observations if I have considered a random sample from, an exponential

distribution with a  location parameter  mu.Now, this  is  the usual  2  parameter  exponential

distribution here the scale parameter is 1 by n and location parameter is mu. So, if I consider

the expectation of X 1 that is equal to mu plus 1 by n.So, if I take T 2 as X 1 minus 1 by n

then T 2 is also unbiased for X 1 for mu so, I have got another unbiased estimator.

Now, in this one I can consider variance also what is variance of X 1 for example, y variance

of X 1 here is 1 by n square. So, variance of T 2 is also 1 by n square, because it is variance

of X 1 itself the variance of a function does not change if I make a change of origin.Now,

consider the result that if expectation is equal to the parameter and the variance goes to 0 T 2

is unbiased and it is variance goes to 0 as n tends to infinity so T 2 is also consistent for mu.

So, in this problem we have considered two estimators,one is based on the sample mean this

is unbiased and consistent and at the same time we have considered T 2, which is based on

the minimum of the observations this is also unbiased and consistent.

So, that brings us to the question that if I have more than one estimator satisfying certain

given desirable properties then, which one you should use. So, in this direction I will give

you 1 more example, let us consider say X 1 X 2 X n be a random sample from a uniformed



distribution on the interval 0 to theta, that means I am considering the density of x i as 1 by

theta 0 less than or equal to x i less than or equal to theta it is equal to 0 otherwise.

(Refer Slide Time: 11:08)

Now, in the uniformed distributionwe know expectation of x i is the middle point of the

interval that is theta by 2. So, immediately we conclude that expectation of x bar is theta by 2

this implies that expectation of 2 x bar is equal to theta so, if I call T 1 is equal to 2 x bar then

T 1 is unbiased and consistent for theta.Now, in this problem let me consider another one let

us consider say X n now X n I am calling to be the maximum of the observations.As in the

previous case we can derive the distribution of X n let us consider the c d f of this so, this is

equal to probability of X n less than or equal to x.

Now, this statement that the maximum is less than or equal to x is equivalent to that each of

the  observations  is  less  than  or  equal  to  x.And once  again  using  the  fact  that  x  i’s are

independently and identically distributed this is equivalent to same each of the x i’s c d f at x

so, this is simply this to the power n.Now, for the uniformed distribution the c d f is it is equal

to 0 if x i is less than 0 it is equal to x by theta, if 0 is less than or equal to x is less than or

equal to theta it is equal to 1 if x is greater than theta.So, if we use this c d f here this becomes

0 if x is less than 0 it is equal to x by theta to the power n, if 0 less than or equal to x is less

than or equal to theta it is equal to 1 if x is greater than theta.



One may find out the probability density function from here, by considering the derivative

because this is a continuous distribution so, you get the density function as n x to the power n

minus 1 by theta to the power n, if x lies between 0 to theta and it is 0 otherwise.
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Let us consider say expectation of X n now so, expectation of X n is equal to integral x into

the density function of X n from 0 to theta, that is equal to integral 0 to theta n x to the power

n by theta to the power n d x.So, as we can see easily the integral of x to the power n will be x

to the power n plus 1 by n plus 1 and if we substitute the limits from 0 to theta I will get theta

to the power n plus 1.And in the denominator I have theta to the power n so that will cancel

and therefore, this value will be equal to n by n plus 1 theta.If I adjust this n by n plus 1 on

the left hand side I get this is equal to theta. So, if I use the notation T 2 as n plus 1 by n X n

then T 2 is unbiased we had obtained estimator T 1 as 2 x bar which is unbiased and now I

have obtained T 2.

Let us check say probability of X n minus modulus theta greater than epsilon whether it tends

to  1  or  not,  that  we  can  check  from  here  also.If  we  take  the  limit  of  this  cumulative

distribution function now, here x is less than or equal to theta. So, this value will tend to 0 if x

is less than theta and whenever, x is greater than or equal to theta it is becoming 1.So, if I take

the limit of if I consider say limit of f X n as n tends to infinity then this is equal to 0 for x

less than theta and it is equal to 1 for x greater than or equal to theta.



Now, this denotes the distribution of a random variable which takes value only theta this is

the c d f of a random variable, which takes value theta with probability 1. So, basically we

approved that X n converges to theta in distribution, but theta is a constant therefore, it is

equivalent to saying X n converges to theta in probability.In fact this fact can also be proved

in a different way I will consider directly the definition of convergence in probability.

(Refer Slide Time: 17:32)

Let me take say probability of modulus X n minus theta say greater than epsilon. Now, the

distribution of X n is in the interval 0 to theta that means, X n is always below theta so, if we

consider  this  modulus  of  X  n  minus  theta  this  is  same  as  theta  minus  X  n.So,  this  is

equivalent  to  probability  of  theta  minus  X  n  greater  than  epsilon  which  I  can  write  as

probability of X n less than theta minus epsilon.Now, this  is nothing but the distribution

function of X n at the point theta minus epsilon since X n is having a continuous distribution

whether, we put less than or less than or equal to it does not make a difference therefore, this

value is equal to theta minus epsilon by theta to the power n as we have derived just in the

previous sheet here.

So, now you can see epsilon is a positive number so, theta minus epsilon is less than theta

therefore, if I take the limit as n tends to infinity this will go to 0 so, X n is consistent for

theta let me call it t 3.If we look at the coefficient n plus 1 by n this goes to one as n tends to

infinity so, we have the result that if t n is consistent for theta and a n goes to one, then a n t n

is  also consistent therefore,  if  we use this fact T 2 is also consistent for theta.So, T 2 is



unbiased and consistent T 1 is also unbiased and consistent so, I have given you two different

distributions where for estimating of one parameter I m getting two different unbiased and

consistent estimators.

So, that shows that actually, we need additional criteria to distinguish between or to choose

between where yes competing estimators.From the previous two exercises, we can also find

something more important if we look at the form of the distribution function of the maximum

and the minimum there is some specific structure here.For example, when I took the limit

here I got only 0 1 here similarly, in the distribution of the minimum, we had that X 1 is

converging to mu so, minimum was converging to the lower limit and here the maximum is

converging to the upper limit theta.

In fact if we have any continuous distributions then this is a general fact so I will state it in

the following results so, let me give it as exercise.Let X 1 X 2 X n be a random sample from

a continuous population with c d f say capital F x and the range of variables is interval a to b

of course, this interval may be open or close that does not make any difference if we are

handling a continuous distribution.Let us define say u is equal to the minimum and v is equal

to X n, then the claim is that u is a consistent estimator for a and V is a consistent estimator

for b.So, the proof will use the steps which we have derived just now that is the c d f of u that

is 1 minus so actually, it is equal to 0 for x less than a it is equal to 1 minus 1 minus f u to the

power n for a less than or equal to x less than b it is equal to 1 for x greater than or equal to b.
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Similarly, if I consider say F v then it is equal to x 0 for x less than a it is equal to F v to the

power n for a less than or equal to x less than b it is equal to 1 for x greater than or equal to

b.Notice here that this equality or inequality does not make any difference here, because it is

continuous distribution.So, if I take the limits here now F is a number between zero to one so

if I take the limits here this number will go to zero. So, this is going to 1 so if I take the limit

as n tends to infinity of F u F am getting 0 for x less than a and it is equal to 1 for x greater

than or equal to a.

So, this is c d f of a random variable which is simply degenerate at a so, we can conclude that

u  converges  to  a  in  distribution  and  therefore,  u  converges  to  a  in  probability,  because

convergence  and  distribution  and  probability  are  equivalent  if  the  right  hand  side  is  a

constant.Similarly, if I consider limit of F V as n tends to infinity then this is also 0 for x less

than b and it is equal to 1 for x greater than or equal to b.So, once again V is converging to b

this random variable is degenerated at b so V tends to b in distribution or V tends to b in

probability.So, if a continuous distribution is having a range a to b then the smallest order

statistics converges to the lowest value or the lowest value in the range.And the largest order

statistic converges to so, these can be treated as the consistence estimators of these respective

parameters.

So, this actually gives some easy applications basically for example, we want to find out a

consistent estimator further range.For example, here range may be b minus a then easily you

can  say  that  v  minus  u  that  is  the  maximum minus  the  minimum  sample  range  is  the

consistent estimator for the population range.As a consequence we conclude that the sample

range that is X n minus X 1 is consistent for the population range b minus a.We have some

further special cases here for example, lower limit could be minus infinity or the upper limit

could be plus infinity in that case for example, if the lower limit is minus infinity then X 1

does not converge in probability.Similarly, if the highest value is unbounded that means, b is

infinity then X n does not converge in probability. (No audio from 26:31 to 26:39)

Next we introduce the concept of efficiency as we have seen that there can be situations

where we have more than one consistent estimator we may have more than one estimator,

which  is  unbiased  as  well  as  consistent.  So,  in  that  case  we  introduced  the  concept  of

efficiency of estimators. (No audio from 27:05 to 27:15)
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Thefor judging the efficiency of the estimators we consider something called as expected

error.We have seen unbiasedness so, in unbiasedness we had expectation of T is equal to the

given parametric functions say g theta. So, if it is not unbiased expectation of T minus g theta

is a biased or you can say expected error, but in the there is a danger in using biased as a

simple you know criteria for a goodness of an estimator.Because sometimes, the negative bias

and the negative errors and the positive errors may cancel out each other so, on the average

the estimator may become unbiased. But actually it is not a good estimator.

We have seen the examples for example, in the estimation of e to the power minus three

lambda we had an estimator minus 2 to the power x in Poisson distribution, which was stating

values always away from the range, but the errors where positive and negative both very

large errors and they were cancelling out each other. So, simply using expectation of x minus

g theta that is biased as a measure is a dangerous thing.So, one may look at other measures

for example, why not consider absolute error and then take expectation. So, one may consider

expectation of say T minus g theta absolute value so this is called the mean absolute error or

one may consider expectation of T minus g theta whole square, which is called the mean

squared error.

So, I will pay some attention to this in the definitions in the first case we are simply looking

at the amount or you can say magnitude of the error that we have committed in estimating g

theta by T and then we take the average of that.In the second one we are considering the



squares so,  if  you think as a layman then probably you will  feel  that  the first  one is  an

appropriate  measure for  the  error  or  you can  say average  error.However, in  practice  the

evaluation of expectation of modulus T minus g theta is quite complex.Second point is that if

we look at  mathematically  this  function  is  not  easy  to  handle,  the  main  problem is  that

modulus function is not a smooth function, because it is having a corner that is at T is equal

to g theta it is not smooth.

Whereas if  we look at  the mean squared error it  is  easy to evaluate  and it  has a simple

interpretation which is quite so, what I do I add and subtract expectation t here. So, let us

consider  this  as  one  term and this  as  one  term so  this  becomes  expectation  of  t  minus

expectation of T square plus expectation of T minus g theta expectation of that square plus

twice expectation T minus expectation T into expectation T minus g theta.So, let us look at

these  terms  the  first  term is  simply  the  variance  of  T.The  second  term is  fixed  term so

expectation will be the same value, because we already taking an expectation here this term is

nothing but the bias of the estimator T.

And if you look at the cross product term here then this term is a constant so expectation

applies to this and this becomes 0.So, we have that mean squared error let me call it MSE of

T that is equal to variance plus the biased.Now, this is quite significant interpretation, if I

have two estimator say T 1 and T 2 and we only say that variance of T 1 is less than variance

of T 2, then we are controlling only one quantity. However, it  may turn out that there is

another estimator say T three which is which may be actually biased, but it is variance is

much less so that the overall mean squared error is smaller. So, the average squared error will

be less so, one can use mean squared error is as a good criteria for judging the goodness of an

estimator.

So,  we  will  say  that  we  can  say  that  estimator  say  T  1  is  better,  which  is  actually  a

terminology for more efficient than T 2 if mean squared error of T 1 is less than or equal to

mean squared error of T 2 for all theta. So, if the two mean squared errors are equal then they

will be same.Now, in the context of unbiased estimation this concept of mean squared error

being smaller is equivalent to variance being smaller.
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For example, if the estimator T is unbiased then bias will be 0 and this means squared error

will be equal to the variance. If T is unbiased for g theta then mean squared error of T is

called to be variance of T.Now, we define uniformly minimum variance unbiased estimators

that is UMVUE.So, an estimator w is said to be UMVUE of a g theta if w is unbiased and for

any other unbiased estimator say W star of g theta variance of W will be less than or equal to

variance of W star that means, it will have the minimum variance throughout the parameter a

space.

The first result in this direction is about the uniqueness of the UMVUE, if so we also use the

terminology best unbiased estimator etcetera. So, if W is UMVUE of say g theta then W is

unique almost everywhere. So, let W star b another UMVUE then by definition expectation

of W expectation of W star both are same as g theta and variance of W and variance of W star

are also same let us call it say sigma square fine.
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Now, let me define say W 1 as half W plus W star then what is the variance of W 1?We can

apply the formula for a linear combination of variables so, variance of a constant times that is

that constant square times variance of W plus W star, which is becoming variance of W plus

variance of W star plus twice covariance between W and W star. Now, we are assuming

variance of W and variance of W star to be sigma square so it becomes 1 by 42 sigma square

plus twice covariance W W star.Now, covariance square is less than or equal to the product of

the variances the well known Cauchy-Schwarz inequality so, this becomes 1 by 42 sigma

square plus twice square root of variance W into variance of W star, but these are both sigma

squares so this is simply becoming sigma square so 2 sigma square plus 2 sigma square so it

becomes sigma square, which is the variance of W or W star.

So, what we are proving?If W is UMVUE W star is another UMVUE then I am able to get

another estimator W 1 which is also unbiased, because if I take expectation of W 1 here that

is again g theta as both W and W star are unbiased and it is variance is less than or equal to

the variance of W.So, let  me call  this  equation number 1 inequality in 1 is not possible,

because our original claim is that W and W star are UMVUE so another unbiased estimator

cannot have variance less than them. So, at the most it can have equal so that means we

should have equality.

Now,  how  this  inequality  came  inequality  came  from  this  condition  of  the  correlation

between w and w star being less than 1 so that means, correlation must be 1 that is covariance



is equal to the square root of the variances that means, W and W star are linearly related with

probability one. So, for equality to hold W star must be linearly related to W with probability

one.Now, once again you have unbiasedness so, if you are saying unbiasedness then what

should be the condition here and also, if I look at say covariance here between W and W star,

then that is equal to covariance between W and a theta W plus b theta so that is equal to a

theta into sigma square.

So, that means because this covariance between W W star is equal to variance W so, a theta is

1 and b theta will be 0 because unbiasedness is there, because expectation W star must be a

theta so that is simply becoming g theta plus b theta so b theta must be 0.So, what we are

concluding here that W is equal to W star with probability 1 that means, W is unique almost

everywhere. So, you cannot have two different unbiased UMVU E if they are two different

then they are equal almost everywhere.

(Refer Slide Time: 41:29)

Now, next I give a necessary and sufficient condition for an estimator to be UMVUE. 

(No audio 41:24 to 41:57)

So, let us consider let U g be the class of all unbiased estimators of g theta let U 0 be the class

of all unbiased estimators of 0. So, we have the following necessary and sufficient condition

so,T belongs to U g with variance of t to be finite so this has minimum variance at theta is

equal to theta naught, if and only if covariance of t with say f is 0 for every f belonging to U 0



for, which variance of f  is  finite.That means,  if  an estimator  is  having covariance 0 that

means, it is uncorrelated with every unbiased estimator of 0 then this will be UMVUE of a

function g let me prove this here. So, let T the unbiased estimator of g and it is variance be

finite and let variance theta naught T be minimum.

Now, let us consider f belonging to U 0 such that covariance between T and F is not 0. So, I

am assuming contrary to what we have to prove so we will arrive at a contradiction. So, let us

consider say T plus lambda F now if I take expectation of T plus lambda F then it is equal to

expectation T that is g theta plus lambda times expectation F that is 0 so it is equal to g theta.

So, this new function which I have created T plus lambda F is also unbiased.

(Refer Slide Time: 45:03)

Now, let us take variance of T plus lambda f so that is equal to variance of T plus lambda

square times variance of f plus twice lambda covariance between T and f.Now, if I put a

condition here that this is less than variance of theta naught T, then this thing cancels out and

it is reducing to a quadratic being less than zero.That means, this condition is equivalent to

lambda into lambda V theta naught f plus twice covariance theta naught T f less than 0.So,

this condition obviously, can be satisfiedthe condition 2 is satisfied for 0 less than lambda less

than minus twice covariance T f by variance f of course, all these evaluations are at the point

theta naught.



If  covariance of T and f  is  negative and for minus twice covariance theta naught T f  by

variance theta naught f less than lambda less than 0 if this is positive.That means whatever,

be the value of covariance between T and f whether it is positive or negative I am able to

obtain a  range of  lambda values,  such that  the variance of  T plus  lambda f  is  less  than

variance of T this is a contradiction to the fact that I assumed that variance of t is minimum at

theta naught. So, where is the mistake?The mistake is that I am assuming that covariance

between T and f is not 0 so this is wrong.So, this contradicts the fact that variance theta

naught T is minimum hence, we must have covariance between T and f equal to 0.
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Now, let us take the converse of this conversely let cos theta between T and into variance of T

prime.So, obviously, this is equivalent to saying that variance of T is less than or equal to

variance of T prime. So, if I am taking covariance of T to be 0 with every unbiased estimator

of 0 and I am taking another unbiased estimator t prime of g theta then I m getting that, the

unbiased the variance of T is less than or equal to variance of T prime, this proves that T has

minimum variance at theta.Another thing which you can conclude from here I have proved

that if t is UMVUE then covariance between T and T prime that is equal to variance of T that

means this is always positive.

So, we are also concluding from here that the covariance or you can say correlation between

the  UMVUE  and  any  other  unbiased  estimator  is  always  positive.And  other  interesting

property about the UMVUE is that, if T 1 and T 2 are U M V U Es of g 1 theta and g 2 theta



respectively then a 1 T 1 plus a 2 T 2 is UMVU E for a 1 g 1 theta plus a 2 g 2 theta.That

means some sort of linearity property is also true for the UMVUE, although it is true for the

unbiased estimation, but it is not clear that it will be true for UMVUE, but that is true here in

fact 1 can look at a very simple proof of this.
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If I consider say covariance of a 1 T 1 plus a 2 T 2 with an unbiased estimator of 0 then it is

equal to a times covariance between T 1 and f plus a 2 times covariance between T 2 and

f.Now, if T 1 and T 2 are UMVUE these are 0 so this is simply 0 so by the previous theorem

this result follows.As an application of this theorem let us consider linear model and try to

obtain UMVUE.So, let us consider the gauss Markov linear model so y is an n by 1 vector

with mean x beta and variance covariance matrix as sigma square y.So, actually it is the part

of the gauss Markov linear model where we write it  as plus epsilon and epsilon follows

normal 0 sigma square I.

So, let us consider say h y be a real valued function such that expectation of h y is say 0 for

all beta this may be say n by p this may be p by 1 etcetera. So, if you write this statement

expectation h y is 0 it is equivalent to h y into the density function of y this is the multivariate

normal distribution so, it is e to the power minus 1 by 2 sigma square y minus x beta prime y

minus x beta.And some coefficient will come which I am writing as a constant this is equal to

0 for all beta belonging to r p this is a multivariate integral here.



Now, you differentiate both the sides with respect to beta then I will get h y then derivative of

this will give this term into the derivative of this with respect to y that gives me x prime y e to

the power minus 1 by 2 sigma square.In fact here I can simplify beforehand I can write the

term which is not involved in why I cannot separate out and take to the other side.So, this is

reducing to so if you differentiate this you will get x prime y here and the same term here. So,

this is equivalent to saying expectation of h y into some coefficient lambda prime x prime y is

equal to 0 for all lambda belonging to r p.

So, what is this one this is a linear function so, by the previous theorem what we are saying is

that lambda prime x prime y is UMVUE of expectation of lambda prime x prime y that is

lambda prime x prime beta.In the gauss Markov theory of linear models, we had proved that

lambda prime x  prime y  is  the  best  linear  unbiased  estimator  of  lambda prime x  prime

beta.Here we are proving that it is not only best linear unbiased it is actually, best unbiased

that is it is the UMVUE for this.Although I have made a small mistake here it is lambda

prime x prime x beta so for this it is becoming best unbiased estimator.

In the forthcoming classes we will consider methods for finding out estimators just now in

the previous two classes; we have considered the properties of the estimator some desirable

criteria. However, there must be some methods by which we can derive these estimators. So,

we will do some well known methods and as well as we will explore further how to find out

the best unbiased estimators.


