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So, friends in my earlier lecture I have told the some criteria for judging the goodness of

estimators. For example, unbiaseness is 1 criteria, consistency is 1 criteria. That means, if an

estimator  is  unbiased  it  is  in  general  preferable  to  an  estimator  which  is  not  unbiased.

Similarly, an estimator which is consistent is preferable to an estimator which is inconsistent.

So, there are many other criteria’s which we will be discussing in the further discussion, then

we dwelt upon how to find out the new estimators or how to propose the estimators.

We have mainly discussed 2 methods. one is the method of moments, the method of moments

concentrated on equating the  sample  moments  with the  population  moments  and thereby

obtaining  the  estimates  of  the parameters.  The method is  quite  simple,  and in  general  it

provides good estimators, but then there are certain criteria which it does not satisfy; for

example, in many cases we saw that the method of moment estimators were not unbiased

although in many cases they were consistent.

Another popular method which was introduced in 1920s by R A Fisher is the well known

method  of  maximum likelihood  estimation.  Here  the  idea  is  that  whenever  a  sample  is

observed we look at the probability of that sample being observed, and what is the parameter

value for which these probabilities or likelihood is maximized. So, we define what is known

as a likelihood function. In the previous class I have given an example illustrating that and

the general form of a likelihood function.

Today, we start with various applications that is in many probability models, what are the

method of maximum likelihood estimators. So, we call in general M L E that is the maximum

likelihood estimators.
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 So, let me discuss some applications which are applicable to popular distributional models,

maximum likelihood estimators. So, let me start with some familiar examples. Let x follow a

binomial n p distribution, now if we say that n is known then p is a parameter, let us consider

the likelihood function. So, the likelihood function is written as a function of the parameter

which is actually the density function and in this particular case it is n c x p to the power X 1

minus p to the power n minus x. Here x takes value 0 1 to n and p is a number between 0 to 1.

Our objective is to maximize this likelihood function with respect to p.

A usual practice is to take the log of likelihood function which we call log likelihood and we

use a another notation small l for this. So, small L p is equal to log of likelihood that is equal

to log of n c x plus x log p plus n minus x log of 1 minus p. Now, if you look at this function

we can apply the usual method of the calculus for finding out the maximum with respect to p.

So, we can consider for example, derivative of this with respect to p. So, this vanishes you

get x by p minus n minus x by 1 minus p which we can write as x minus n p divided by p into

1 minus p.

Now, if you notice this thing this is less than 0 if p is greater than x by n and it is greater than

0 if p is less than x by n. So, we can see from here that L p this will be increasing if p is less

than x  by n  and it  is  decreasing  if  p  is  greater  than  x  by n  therefore,  the  shape  of  the

likelihood function is  something like  this  if  you are  plotting  L p then  it  is  attaining  the



maximum at the point x by n. So, the maximum value of L p is attained at p is equal to x by

n.
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So, we say that p hat is equal to x by n is the maximum likelihood estimator of of p. Now,

you notice this thing x by n is actually the sample proportion. So, we are getting that the

sample proportion is the maximum likelihood estimator of the population proportion p. So,

this is the natural estimator and from the method of maximum likelihood estimator we are

actually  getting  that  as  an  estimator.  Let  me  take  some more  examples  for  the  popular

distributional  models,  suppose  I  have  a  random sample  X 1,  X 2,  X n  from a  Poisson

distribution with parameter say lambda.

Our interest is to find out the maximum likelihood estimator for the parameter lambda as you

recall the parameter lambda in the Poisson distribution represents the average arrival rate or

the mean of the process in which the Poisson distribution is generated. So, if you write down

the likelihood function L lambda and let me use the notation x for the sampled observation X

1, X 2, X n this is nothing, but the joint probability mass function of X 1, X 2, X n written at

the points X 1, X 2, X n.

So, this is nothing, but the product i is equal to 1 to n. Now, this is for 1 particular X I, if we

write it is e to the power minus lambda, lambda to the power X i divided by X i factorial. So,

this can be further simplified e to the power minus n lambda, lambda to the power sigma X i

divided by product of X i factorial. Now, as you notice we have to maximize this function



with respect to lambda and this function here lambda is occurring in the exponent as well as

lambda  has  an  exponent.  Therefore,  it  will  be  convenient  if  once  again  in  place  of  the

likelihood function we consider log likelihood function.

So, we take log of this, we call it log likelihood that is equal to minus n lambda plus sigma X

i log of lambda minus log of product X i factorial. Once again if you observe this is a non-

linear function of lambda. We can apply the usual method of analysis for finding out the

maximum with  respect  to  lambda.  So,  let  us  consider  the simple  derivation  of  this  with

respect to lambda. So, that is equal to minus n plus sigma X i by lambda that is equal to

sigma X i minus n lambda divided by lambda. Easily you can see that it is greater than 0 if

lambda is less than X bar where X bar is actually sigma X i by n and it is less than 0, if

lambda is greater than X bar.

So,  naturally  if  you plot  the  behavior  of  the  L function.  So,  suppose  this  is  my  x  axis

represents lambda and on the y axis, I represent l of lambda then for lambda less than X bar

the value is positive of the derivative therefore, the L lambda function will be increasing and

for lambda greater than X bar this d l by d lambda is negative therefore, this L lambda will be

a decreasing function. Therefore, the maximum occurs at lambda is equal to X bar.

So, the maximum occurs at lambda is equal to X bar. So, we say that lambda hat is equal to X

bar is the maximum likelihood estimator of lambda. Once again you observe here this is the

sample mean and in this particular case it turns out that the sample mean is the maximum

likelihood  estimator  of  lambda.  In  the  method of  moments  also  we would  have  got  the

estimator because expectation of X bar would have been equal to because the first moment is

lambda and first  sample moment is  X bar. So,  this  would have also been the method of

moments estimator for lambda in the case of Poisson distribution.

However, in the case of maximum likelihood estimator we have a restriction.  Restriction

means that whatever be the required parameter space the maximization is over only in that

region  that  thing  is  not  necessarily  satisfied  suppose  we  are  considering  the  method  of

moments, because there we simply equate the sample moments with the population moments.

We do not bother about what is the region of the parameter, that means, the region where the

parameter can vary.

Similarly, when we apply the concept of unbiasedness or consistency we do not look at the

parameter space. In that sense the maximum likelihood estimation is more powerful and all



encompassing procedure because it takes into account what is the sampled observations as

well  as  what  is  the  required  parameter  space  where  you  are  actually  considering  the

estimation. In that sense this has more applicability and acceptance for the user point of view.

To give an example in this case I have taken lambda to be greater than 0. That means, the

arrival  rate  is  positive  which  is  true  in  general  for  a  Poisson process,  but  suppose your

physical constraints restrict  the parameter space for example,  it  could be a service queue

where if  the number of required persons exceeds a certain number then the service,  that

means, then no more persons are allowed then you may have a situation of this nature.
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Consider for example, lambda is less than r equal to naught where lambda naught is a fixed

unknown. Now, in this case if you see we have here looked at the maximum value lambda is

equal to X bar. Now, you may have 2 cases let me give the plot here. So, see this is X bar.

Now, there may be 2 cases. It could happen that lambda naught value is here. If lambda

naught is here, then the maximum of likelihood function is in the region 0 to suppose this is

starting point is your 0.

So, 0 to lambda naught the maximum value is still  occurring at lambda naught. It is still

occurring at X bar. Whereas, you may have another situation where your lambda naught may

be on this  side,  your  X bar  is  here.  Now, if  you look at  the  likelihood function we are

concerned only for this portion and therefore, if you see the maximum value that is occurring

here that is at lambda naught.

So, we cannot say here that the maximum likelihood estimator is X bar. It is actually lambda

naught. So, in this case the maximum likelihood estimator of lambda is let me call it lambda

hat R M L restricted M L E. So, this is equal to X bar if X bar is less than or equal to lambda

naught, it is equal to lambda naught if X bar is greater than lambda naught. So, you note here

that  this  estimator  is  certainly  different  from the  method  of  moments  estimator  for  this

problem.

Because the methods of moments estimator does not take care of this fact that lambda is

bounded by lambda naught. So, the answer would have been still X bar for the methods of

moment estimator. Let me explain the situation with some other examples also. 
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Let us for example, take X 1, X 2, X n following normal mu sigma square estimation. Now, I

consider different cases because when we are dealing with the 2 parameter problem then

there may be some information regarding 1 parameter or there may be information regarding

both the parameters. I will consider all these cases.

Let us take say case 1, say sigma square is known. So, in that case without loss of generality

we can  take  sigma square  to  be  1  without  loss  of  generality. So,  if  we write  down the

likelihood function the likelihood function is L mu x because when sigma square is known

only 1 parameter is occurring here. So, it is the joint density function of X 1, X 2, X n at the

observed values small X 1, small X 2, small X n that is equal to product i is equal to 1 to n, 1

by root 2 pi e to the power minus 1 by 2 X i minus mu square.

Now, we try to write it in a slightly compact fashion. So, you get 2 pi e to the power n by 2 e

to the power minus 1 by 2 sigma X i minus mu square. So, as before you can see here mu is

occurring in the exponent therefore, it is beneficial if we consider the log likelihood. So, we

consider log likelihood function as minus m by 2 log 2 pi minus half sigma X i minus mu

square.

In order to maximize this with respect to mu we consider simple derivative respect to mu

which gives us sigma X i minus mu is equal to 0 which are the extremely simple solution mu

hat is equal to X bar. So, X bar is the maximum likelihood estimator of mu. Now, if you look

at here the parameter space for mu is minus infinity to infinity, for square it is 0 to infinity.



So, when we took sigma square is equal to 1 the parameter space is simply 0 to minus infinity

to infinity and if you look at the X bar, X bar is likely to be n e value because in the normal

distribution case the variable lies on the real line and therefore, the average value will also lie

on the real line.

Now, if we had considered the methods of moments estimator in this problem then for mu the

methods of moment estimator also would have been X bar; however, let us consider say a

slightly different situation in the same case
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 Suppose, we know from the physical considerations that mean mu is either greater than or

equal to mu naught, less than or equal to mu naught or it lies in a interval say mu 1 to mu 2.

So, let me take 1 case say mu is greater than or equal to mu. Now, you look at the behavior of

the likelihood function. So, we have observed here d l by d mu is equal to sigma X i minus

mu. Now, this you can write as n times X bar minus mu. Now, once again you notice this.

This is less than 0 if mu is greater than X bar, it is greater than 0 if mu is less than X bar. So,

the nature of the likelihood function would have been of this nature that if this is mu on the x

axis on the y axis we plot l mu, then for mu less than X bar the likelihood function is, the log

likelihood function is increasing and it is decreasing thereafter.

Therefore a maximum is occurring at X bar. Now, if I use the restriction mu is greater than or

equal to mu naught then there are 2 cases. Let us make the plot of the likelihood function. On



this side we show mu and on this side we show L mu. So, we may have a situation that say

mu naught is here. Now, our parameter expresses mu greater than r equal to mu naught. So, if

you see it carefully our region of consideration is on the right side of this X is equal to mu

naught, this mu is equal to mu naught. Now, the maximum value that mu is equal to X bar

that is occurring within this region.

So, the maximum likelihood estimator for mu is still remains X bar. Let us look at the other

case. Suppose, mu naught is on the right side here. Now, there is a problem, mu is greater

than or equal to mu naught. So, our region of maximization is only this. Now, in this region if

you see the likelihood function is decreasing, the maximum value is attained at mu naught

therefore, your formal maximum likelihood estimator has got modified. So, we in this case

the maximum likelihood estimator of mu can be written as mu hat. Let me put R M L just to

denote a restriction that is equal to X bar if X bar is greater than or equal to mu naught and it

is equal to mu naught if X bar is less than mu naught.

Or we can also express it in this fashion that mu hat R M L is equal to maximum of X bar and

mu  naught-.  So,  immediately  you  can  notice  that  it  has  got  changed  from  the  original

maximum likelihood estimator  and therefore,  it  is  certainly different  from the method of

moments estimator also because this procedure takes care of the exact parameter space where

the maximization problem is solved, which is not true in the method of moments estimator. I

will consider other type of restrictions for this problem.

So, let us take say mu less than or equal to mu naught. Now, if you take mu less than or equal

to mu naught, we can go back to the same graph and see this. If mu is less than or equal to mu

naught and mu naught is in this position then our region of maximization is here therefore,

the maximum value is occurring at mu naught. That means, I will say that mu had R M L it is

equal to mu naught if X bar is greater than or equal to mu naught and it is equal to.

Now, in this case if you see if mu naught is on this side then our region of maximization is

this full thing and here the maximum is occurring at X bar. So, it is equal to X bar if X bar is

less than mu naught. So, this you can also say in other words as mu had R M L is equal to

minimum of X bar and mu naught. So, notice here if we have the full region we get X bar as

the maximum likelihood estimator for mu in the case of estimating the mean of a normal

distribution when the variance is known.



Then there are certain restrictions like a lower bound placed or an upper bound placed for the

parameter mu then accordingly the maximum likelihood estimator gets modified. In this case

it is becoming maximum of X bar and mu naught and in this case it is becoming minimum of

X bar  and mu naught.  Let  me  take  another  kind  of  restriction  in  many  of  the  practical

problems. It may happen that the mean mu lies between 2 values for example, you look at the

average income levels,  you look at  the average rainfall,  you look at  the average weight,

average height.

So, there are various parameters which occur in the practical situations which are actually

bounded in nature, they are not unbounded; that means, we cannot say that they take values

from minus infinity to infinity. So, when that information is available to us in that case we

should utilize that and our estimator should reflect that.
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 That means, let me take the third restriction of this nature that say a is less than or equal to

mu is less than or equal to b. Now, this is even more interesting.

We look at the likelihood function as we have plotted in this particular case. So, so if your a

and b is  for  example,  containing X bar, that  means,  X bar  lies  between a to  b then the

maximum occurs as usual at X bar. However, you could have had other kind of situations. So,

in this case in this case u hat is equal to X bar, that means, when X bar is lying between a to

b. You consider another situation for example, a and b are here. If a and b are here, then we



have to look at the maximum of likelihood function within this region alone and obviously,

the maximum occurs at a.

So, in this particular case then the maximum likelihood estimator is becoming a if X bar is

less than a. And a similar situation would occur if we consider say say a and b are to the left

to the X bar. In this case our maximization problem is restricted to this region and if you see

the maximum is occurring at b. So, in this particular case then mu hat will become equal to b,

that means, if X bar is greater than or equal to b. Therefore, our solution for the full problem

of mu lying between a to b is that mu hat R M L, it is equal to a if X bar is less than or equal

to a it is equal to X bar if a is less than X bar less than b and it is equal to b if X bar is greater

than or equal to b.

So, if there is any prior information about the parameter the method of maximum likelihood

estimation  takes  care  of  that.  Now, let  me  take  additional  cases  in  the  case  of  normal

distribution. See, here we have taken the case for estimating mu because sigma square was

known. Now, you may have another identical situation where mu may be known and we may

be interested in the estimation of sigma square. So, let us look at this situation then say mu is

known.

(Refer Slide Time: 29:28)

If mu is known then without loss of generality, we may put mu is equal to 0 because you can

always shift all the observations by mu naught for example, if I say mu is equal to mu naught

then we may put it is equal to 0. So, now, you look at the likelihood function notice here the



problem gets modified in the maximum likelihood estimation as soon as the the information

about the parameters is changed.

So, the likelihood function is the product of the density functions of X 1, X 2, X n that is

equal to 1 by sigma root 2 pi e to the power minus X i square by 2 sigma square; i is equal to

1 to n. So, we can write it in a more compact fashion. It becomes equal to 1 by sigma square,

sigma to the power n, 2 pi to the power n by 2, e to the power minus sigma X i square by 2

sigma square. Notice here that sigma is occurring in the denominator as well as it is occurring

in the denominator of the exponent therefore, it is beneficial to consider the log likelihood

function that is equal to minus n by 2 log of sigma square minus n by 2 log of 2 pi minus

sigma X i square by 2 sigma square.

So, we consider the likelihood equation that is d l by d sigma square is equal to 0. So, so

when you differentiate this you will get minus n by 2 sigma square plus sigma X i square by

twice sigma to the power 4. Notice here that I am considering sigma square as a parameter .

One we misled by considering sigma as the parameter and then you may be getting a slightly

different derivative here. So, later on we will show that the 2 procedures will lead to the same

answer identical answer; that means, whether you are considering estimation of sigma or you

are considering estimation of sigma square, it should not lead to contradictory statements.

Now, we write it in a slightly modified fashion sigma X i square minus n sigma square by

twice sigma to the power 4. So, notice here this will be less than 0 if sigma square is greater

than sigma X i square by n and it is greater than 0, if sigma square is less than sigma X i

square by n. So, if we look at the plot of the likelihood function then naturally the likelihood

function is increasing up to sigma X i square by n because the derivative is positive for sigma

square less than sigma X i square by n.

So, it is increasing up to this and thereafter it is decreasing. So, the maximum occurs at sigma

X i square by n. So, the maximum likelihood estimator of sigma square is we will write m l

just to denote that it is the maximum likelihood estimator that is standing out to be 1 by n

sigma X i square. Now, you can look at the variation in place of mu is equal to 0 if we had

put mu is equal to mu naught then what would have been the modification. Here, we would

have got X i minus mu naught whole square therefore, when we considered the derivative

here we would have got an increasing and decreasing nature for sigma X i minus mu naught

whole square by n.



Thereby the answer would have been 1 by n sigma X i minus mu naught whole square. So,

now, once again let me show you the effect of the prior information in this. Suppose, on

sigma square we have certain information because as you know sigma square is a variance.

Now, the variance are a reciprocal of that is known as the precision. So, the variability may

be known in advance or it may have certain restrictions for example,
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we may consider say restrictions on sigma square say for example, sigma square may be

greater than or equal to sigma naught square.

Now, if you consider sigma square greater than or equal to sigma naught square then in this

case there will be 2 cases because sigma naught square may occur here or sigma naught

square may occur here. So, let us see. This is sigma X i square by n and it may happen that

sigma naught square is here. So, in this case the maximum occurs at this point whereas, if

sigma naught square occurs here in that case our region of maximization is here because

sigma square is greater than or equal to sigma naught square.

In that case the maximum will occur at sigma naught square. So, we conclude that sigma hat

square restricted M L E is equal to sigma X i square by n if sigma square, if sigma X i square

by n is greater than or equal to sigma naught square, it is equal to sigma naught square if

sigma X i square by n is less than sigma naught square. That means, you can write it as

maximum of sigma X i square by n and sigma naught square. In a similar way one may

consider the case of an upper bound on sigma square
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 Let me take sigma square less than or equal to sigma naught square So, once again if we look

at the plot of the likelihood function in that case if sigma naught square is occurring here now

this  is  our region of  maximization.  So, the maximum will  occur  at  sigma naught  square

whereas, if sigma naught square occurs here then this is our region of maximization and we

get the maximum here. So, in this case the maximum likelihood estimator of sigma square

will be minimum of 1 by n sigma X i square sigma naught square.

So, the effect of the information or the prior information about the parameter plays a role in

the maximum likelihood estimation and that is 1 important feature which distinguishes the

method of maximum likelihood estimation from various other methods. The examples that I

have discussed take into account that the likelihood function are the log of the likelihood

function is a nice or you can say a smooth function, because we are able to differentiate and

carry out the usual arguments of the analysis.

Now, in certain situations that may not be possible. Let me take up another case say X 1, X 2,

X n  is  a  random sample  from uniform 0  theta  distribution  where  theta  is  the  unknown

parameter  which  is  certainly  positive.  We  are  interested  in  the  maximum  likelihood

estimation for theta. If you recollect the method of moments estimator for theta was 2 X bar

because the mean of the uniform distribution is theta by 2. So, the first sample moment that is

X bar would be the moments estimator for theta by 2, that means, 2 X bar will be the method

of moments estimator for theta.



Let us look at the maximum likelihood estimator here. So, the likelihood function is l theta x

that is equal to product of f X i theta, i is equal to 1 to n. Now, this we write as 1by theta to

the power n because the density function of the uniform distribution on the interval 0 to theta

it is 1 by theta. So, it will become 1 by theta to the power n, but at the same time let us not

forget that each of the X i is lies between 0 and theta this is for i is equal to 1 to n.

Now, we should also write that it is 0 at other places. Now, a common thing which we have

been applying earlier that you take the log of this and differentiate with respect to theta and

put equal to 0. Now, in this case what it would lead to? You will get minus n log theta and if

you differentiate you will get minus n by theta which you put equal to 0 will give you an

absurd  answer. The  reason  for  this  absurdity  is  that  we  have  not  taken  care  of  the  full

likelihood function. The full likelihood function takes into account this portion also.
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So, we write it in a slightly more compact fashion as follows. We may write the likelihood

function as 1 by theta to the power n, 0 less than or equal to X 1, less than or equal to X n,

less than or equal to theta or we can also write theta as 1 by theta to the power n i. Here, we

can say that all the X i’s are from 0 to X n and multiplied by X n itself lies between 0 to theta.

Now, if you look at the maximization of this with respect to theta, now the theta is occurring

in the denominator.

So, that means, what is the minimum value of theta, the minimum possible value of theta is X

n, theta cannot be below X n,  because of the observations.  Each of the observations lies



between 0 to theta. So, l is maximized when theta is minimized which is possible when theta

is equal to X n. So, theta hat m l is equal to X n is the maximum likelihood estimator of theta,

that is the maximum of the observations. So, you can see here the result is quite different

from the method of moments estimation here

Because in the method of moments we would have got 2 X bar. So, this is certainly different

and later on we will study the criteria that which 1 should be preferred here. That means,

whether m m e is better here or M L E is better here which one one should prefer. So, we will

discuss about those criteria later on. This example shows that one should not blindly use the

differentiation  and  put  equal  to  0  because  this  will  not  be  the  answer  in  this  particular

situation.  Similar,  thing  would  occur  for  example,  if  I  consider  2  parameter  uniform

distribution.
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Suppose, I take a random sample from uniform theta 1 to theta 2, here theta 1 is certainly less

than or equal to theta 2. So, in this particular case we have 2 unknown parameters here and

we consider the maximum likelihood estimation. So, as before we consider the likelihood

function and this will be and it is equal to 0 ensure. Now, you notice the likelihood function

here. The likelihood function has theta 2 minus theta 1 in the denominator which is positive

quantity and we are looking at the maximization. That means, theta 2 minus theta 1 should be

minimum. That means, theta 2 should be minimum and theta 1 should be maximum.



Now, if you look at the nature of the observations all the observations lie between theta 1 to

theta 2 therefore, the minimum of the observations is certainly greater than or equal to theta 1

and the maximum of  the observations  is  certainly  less  than or  equal  to  theta  2.  So,  l  is

maximized  with  respect  to  theta  1  and  theta  2  when  theta  2  is  minimized  and  theta  1

maximized. So, in this case we have theta 1 hat maximum likelihood estimator is equal to the

minimum of the observations and theta 2 hat M L Equal to the maximum of the observations.

And all this is an example where I have considered 2 parameter problem. So, the method of

maximum likelihood estimator can be used for the maximization of the likelihood function

when there  can  be  more  than  1  parameter  and in  that  case  the  maximization  should  be

considered a with respect to all the parameters. So, in this case you can see the simultaneous

maximum is occurring.

Now, let us go back to the case of normal distribution that I discussed earlier. Here, I had

taken special cases. If you see carefully if we consider normal mu sigma square here, I have

taken sigma square to be known. So, in effect I have reduced it to 1 parameter problem.

Similarly, if you look at mu is known then once again the parameter has been reduced to

sigma square alone. So, in effect this problem also reduced to 1 parameter problem. However,

in general both the parameters in a normal distribution may be unknown and in that case let

us look at the solution.

So, let me discuss in detail. So, we have X 1, X 2, X n a random sample from normal mu

sigma square as before. However, both mu and sigma square are unknown. So, in general you

remember that in the normal distribution the mean parameter may vary from minus infinity to

plus infinity and the variance parameter will be from 0 to infinity. Now, in this case when we

want to find out the maximum likelihood estimator, we will like to find out for both mu and

sigma square. So, let us write down the likelihood function.
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 So,  the  likelihood function  is  L mu sigma square  X.  Notice  here  that  this  has  become

function of both mu and sigma square now. So, this is a joint density function as before. In

the earlier cases I had substituted special values of mu or sigma square as the case was. In

this  case  we will  have  to  write  down the  full  form of  the  density  function  of  a  normal

distribution that is 1 by sigma root 2 pi e to the power minus 1 by 2 sigma square X i minus

mu whole square.
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So, we write it in a slightly more compact fashion. This becomes 1 by 2 pi sigma square to

the power n by 2 e to the power that when you take the. So, it will become e to the power

minus sigma X i minus mu square by twice sigma square. Again, you observe the parameters

for which we need the estimators they are occurring in the exponent as well  as they are

occurring in the main form here. So, it will be beneficial if we consider the log likelihood as

before. So, the log likelihood L mu sigma square, log of L mu sigma square x that is equal to

minus n by 2 log of 2 pie minus n by 2 log of sigma square minus sigma X i minus mu square

divided by twice sigma square.

This equation this function involves mu and sigma square 2 variables. We need to maximize

this with respect to both mu and sigma square. So, since this function is still a very nice

smooth function. So, we can still use the direct calculus methods for example, by taking the

first order derivatives putting them equal to 0 they are giving us the likelihood equation. The

solutions of that will be the points of minimum or maximum which we can check separately

that they would be actually leading to the maximization points. They will not be the points of

minimum.

So, in this case for example, we write down the the likelihood equations. The likelihood

equations are del l by del mu is equal to 0 that is sigma X i minus mu by sigma square is

equal to 0 which we can further write because this can be easily simplified. Sigma square is

in the denominator that would give mu hat is equal to X bar. The other equation is del l by del

sigma square is equal to 0 which will give me minus n by y sigma square plus sigma X i

minus mu square by twice sigma to the power 4 equal to 0

Which will give me sigma square is equal to 1 by n, sigma X i minus mu hat square. Actually,

the equation is sigma square is equal to 1 by n sigma X i minus mu square. We substitute the

value  of  mu  from  the  first  equation  and  substitute  here.  So,  the  maximum  likelihood

estimators then turn out to be.
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 So, the maximum likelihood estimators of mu and sigma square are mu hat m l is equal to X

bar and sigma hat square m l is equal to one by n sigma X i minus X bar whole square.

In this case you may notice that these are the same as the method of moments estimator for

this  particular  problem,  but  once  again  as  I  mentioned  earlier  the  method  of  maximum

likelihood can take care of many other possibilities also. For example, we may have say prior

information about mu say mu is greater than or equal to 0. In that case once again we look at

the likelihood function here we are getting n X bar minus mu. So, if we plot the behavior with

respect to mu then the maximum is occurring at X bar, but if X bar is greater than 0, I will

consider 0 here and this region is coming.

So, the maximum likelihood estimator will be X bar. However, if 0 occurs on this side and

then we have this portion then the maximum will occur at 0. So, arguing as before we note

that mu hat restricted m l will be equal to X bar, if X bar is greater than or equal to 0 it will be

equal to 0 if X bar is less than 0, which we can actually write as maximum of X bar and 0.

Now, if we use this in that case the second equation the solution will get modified because for

sigma square the estimator was 1 by n sigma X i minus the estimator of mu.

And if the estimator for mu gets modified immediately the estimator for sigma square will

also get modified. So, in this case the maximum likelihood estimator of sigma square would

be modified to sigma hat square or m l is equal to 1 by n sigma X i minus maximum of X bar



0 which we can write as 1 by n sigma X i minus X bar whole square if X bar is greater than

or equal to 0 and it will become 1 by n sigma X i square if X bar is less than 0.

So,  the  placing  of  additional  information  about  the  parameter  changes  the  maximum

likelihood estimators. I will consider a few more examples in the next class and also then we

will see there are certain desirable properties, which are basically called the large sample

properties that the maximum likelihood estimators satisfy and because of this the method has

wide applicability among statisticians. So, in the tomorrow’s class we will consider various

properties of the maximum likelihood estimators and then we will proceed to determining the

criteria for judging the goodness of the estimators. So, thank you. 


