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Lower Bounds for Variance – I

So, now we will take up another topic, that is for the lower bounds for the variance. Now,

what  is  this  concept  earlier,  we  have  seen  that  unbiasedness  is  a  desirable  property  or

desirable criteria to use an estimator; however, we have also seen the example that in a given

problem  there  can  be  several  unbiased  estimators.  Now,  if  there  are  several  unbiased

estimators which one to choose.

Then we can decide some additional criteria such as variance. The one which has smaller

variance will be considered to be more stable in some sense. Now therefore, we need to have

an estimate of what could be the variance or what could be the minimum variance. So, this

gives the idea or you can say this led to the development of methods for finding out lower

bounds for the variance of an unbiased estimator.
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So, in this section, we will discuss various methods for determining the lower bounds on the

variance  of  unbiased  estimators.  As  we  have  seen  in  the  case  of  maximum  likelihood

estimation the last results that I gave,  that variance asymptotic variance of the maximum

likelihood estimator was one by the information now, this is asymptotic variance. So, if the

maximum likelihood estimator is the best in some sense, then its variance will not be below 1

by I theta and; that means, the fisher’s information.

The question comes that whether similar result we can give for finite samples. Now, this is

precisely the question that was post to indian statistician c r rao in his class in 1943 at Indian

statistical institute and he started working out for finite samples and it led to the famous lower

bound by rao; however, at the same time the result was also proved by Frechet in 1943, by

Cramer in 1946 therefore, it is now popularly called Frechet rao Cramer in equality.

Now, once again in order to prove this, we need certain regularity conditions they are known

by the name Wolfowitz regularity conditions named after the statistician Jacob Wolfowitz.

So, as before we have a random sample be a random sample from a distribution having p d f

and of course, it could be p m f, f x theta with respect to say measure mu. So, we assume the

usual conditions for the existence of a density function or the mass function etcetera. Now, an

estimator delta X is to be considered for the parameter theta. We make the assumptions that

theta  lies  in  an open interval  of  the real  line.  The derivative of  the  density  or  the  mass

function exists and of course, for all X or for almost all X.

The integral I have used a more general notation, because if you this discrete this it will be

replaced by summation I have written here d mu. So, that takes care of both the cases. So, this

is a enfold integral or summation, this can be differentiated under the integral sign for any

delta, such that this is an integrable function; that means, this integral exists; that means, for

any integrable function its expectation should be or its integral should be differentiable. So,

that the above integral exists. This is positive for all theta, once again this is related to the

fisher’s information measure.



(Refer Slide Time: 06:45)

Under these conditions, we have the following inequality. I will call it Frechet-rao-Cramer

inequality,  because  Frechet’s  paper  appeared  in  1943,  Rao’s  paper  appeared  in  1945,

Cramer’s paper appeared in 1946. So, they all seem to have done it independently. Under

assumptions 1 to 4, if expectation of delta X is equal to theta plus b theta,  then  variance  of

delta  is  greater  than  or  equal  to  1  plus,  b  prime theta  whole  square  divided by n times

expectation del by del theta log of f X theta whole square.

Firstly, let us look at the proof of this. So, what we are doing is that for an estimator delta we

are providing the lower bound for the variance, this right hand side you can see it is not

dependent upon the choice of the estimator that we have chosen; that means, any estimator of

any unbiased estimator of theta plus b theta, we will have the minimum variance which will

be greater than or equal to this, because this is the lower bound. So, it may be attained or it

may not be attained let us look at the proof of this result first of all.

So, expectation of delta X is equal to theta plus b theta. Now, this is of course, true these

statements are true for all theta. Now, we are assuming that we can differentiate under the

integral sign. So, this is delta product f of X i theta, d mu X now, this denotes d mu X 1, d

mu, X 2 d mu, x n this is equal to theta plus b theta for all theta differentiating under the

integral sign. Let me again emphasize that this integral is a generalized label still just integral;

that means, if we are dealing with the discrete distributions then this will be replaced by the



summation. So, this is delta X 1, X 2, X n product of f of X I, theta d mu X 1, d mu X 2, d mu

X n.

So, this is a enfold integral. So, if you differentiate with respect to theta, we will get delta X

now, derivative of the product that you can easily write as sigma del by del theta log of f X i

theta multiplied by product f X i theta, d mu X that is equal to 1 plus b prime theta. Now, we

use some notation this term I call say s X theta, then I am getting delta X into s X theta into

the joint distribution of X 1, X 2, X n and d mu X i, d mu X 1, d mu X 2, d mu X n. So, this

we can write as, expectation of delta X into S X theta it is equal to 1 plus b prime theta.

Now, what we can see that this term if we look at this, we have made the assumption here

that for any function delta for which this integral exist this can be differentiated. So, if we

look at  this  particular  term that  is  S X theta,  then expectation of  S X theta  can also be

differentiated under the integral sign, if we look at that then this is going to be 0 let us see this

let me give this two here.
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Now, we have the integral of the distribution of X 1, X 2, X n, equal to 1, by the property of

the distribution that the integral or the summation should be equal to 1 over the whole range.

So, once again if we differentiate, let me call it relation three. Under the integral sign, we get

sigma del by del theta f I, f X i theta into product of f X i theta, see if we differentiate one

particular term then other will be there. So, we can keep that also and then divide by that. So,



this becomes sigma del by del theta f X i theta by f X i theta product f X i theta, d mu X is

equal to 0 now, this term I can write as del by del theta log of f X i theta. Now, compare this

here we defined S X theta to be sigma del by del theta log of f X i theta and this is the term. 

So, what we have got here, we have got integral of S X, S x theta product f X i theta, d mu X

is equal to 0; that means, expectation of S X theta is 0, if expectation of a random variable is

0,  then expectation of that random variable multiplied by another will be equal to the

co-variance  term.  So,  we  can  say  that  using  this  in  two,  we  can  write  that  co-variance

between delta X and S X theta is equal to 1 plus b prime theta. 
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Now, this relation we squire rate. Squaring the above relation, we get 1 plus b prime theta

square is equal to co-variance square delta X, S X theta. Now, co-variance square this is less

than or equal to the variance of delta into variance of S X theta, if we use Cauchy-Schwarz

inequality. So, this is less than or equal to variance of delta X into variance of S X theta this is

true in general, let me say it here using Cauchy-Schwarz inequality. Now, once again since

expectation of S X theta is 0 variance is nothing, but expectation of S square or we can also

say that, variance of S X theta now, that is equal to variance of sigma del by del theta log of f

X i theta. Now, this is variance of a sum.

Now, each term in the sum involves each X i, X i, are independent and identically distributed

random variables. So, this becomes nothing, but the n times we can say variance of del by del



theta log of say f X 1 theta since, expectation of del by del theta log f X theta is 0 this is

nothing, but expectation of del by del theta log f x theta square. So, this is equal to n times

expectation del by del theta, log of f X theta square. So, if we are using the notation I theta

for this  term then this  is  nothing, but the fisher’s information.  In the sample we can say

fisher’s information contained in the full sample.

So, this we can then write four, here we are having variance delta X greater than or equal to 1

plus b prime theta whole square divided by this and that term is this. Variance of delta X

greater than or equal to 1 plus b prime theta see this will be whole square here, divided by n

times expectation del by del theta log of f x 1 theta whole square, which we can also write as

1 plus b prime theta square by I theta in the sample, this means the random sample is X 1, X

2, X n. So, this is exactly the statement of the Cauchy-Schwarz of the Frechet-rao-Cramer

inequality.

Now, we can look at the various ramifications of this. First of all in the assumption we have

taken, the delta estimator to have expectation theta plus b theta, suppose our parameter of

interest is theta and delta is an unbiased estimator then b theta will be 0, if b theta is 0 then

this term will vanish. So, the lower bound will come as simply 1 by the information or 1 by n

times expectation del by del theta log of f X theta. 
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So, we have the following case as a corollary I write, if delta X is unbiased for theta then

variance of delta X is greater than or equal to 1 by n times expectation del by del theta log of

f x 1 theta whole square that is 1 by I theta. This term as I have defined fisher’s information

in X 1, X 2, X n, about theta another point that let us see the Rao-Cramer inequality, that we

have proved the proof used Cauchy-Schwarz inequality. Now, Cauchy-Schwarz inequality

has a condition for the equality, also when is that true the equality is true when delta and S

are; that means, they are linearly related we can say that S is a linear function of delta or delta

is a linear function of S since, here the random variables are involved.

 We have to say that the they are linear functions with probability one. So, we can say as a

remark the equality in FRC inequality is achieved, if and only if delta X and S X theta are

linearly related with probability 1, that is there exist functions say alpha theta and say beta

theta such that, we can say delta X plus alpha theta S X theta is equal to say beta theta with

probability 1. Now, another point I have been using that expectation of del by del theta log f x

theta square and earlier, I wrote this also as minus expectation del 2 by del theta square log f

x theta. Now, that is true provided the regularity conditions are satisfied. So, let me prove that

also here. Under the regularity conditions, under the regularity conditions expectation of del

by del theta log of f X theta square is equal to minus expectation del 2 by del theta 2 log of f

X theta.
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So,  let  us  look at  the proof  of  this.  Expectation  of  see,  we have to  consider  the  second

derivative here. So, let us write this del 2 by del theta square log of f X 1 theta that is equal to

del by del theta of first derivative. Now, the first derivative is nothing, but f prime by f. So, if

you differentiate this you will get second derivative, here multiplied by f minus derivative of

this  and this.  So, that becomes square divided by f X 1 theta square.  So,  if  we consider

expectation of this, that is equal to integral of f double prime X 1 theta f X 1 theta d.

 So, this will be canceled out, because when we multiply by f X 1 theta f X 1 theta and f X 1

theta square that will cancel out minus, second term will become f prime X 1 theta by f X 1

theta whole square f  X 1 theta d mu X. Now, this  term is 0 because of the assumption,

because integral f X 1 theta d mu X is equal to 1. So, you differentiate under the integral sign.

So, this becomes 0. So, this is nothing, but minus expectation of del log f X 1 theta by del

theta whole square. So, these are two alternative ways of evaluating this fisher’s information

measure. Now, let me give examples of the situations we had the lower bound is attained and

also  the examples  where the  lower bound is  not  attained.  Certainly  whenever, the  lower

bound  will  be  attained  the  unbiased  estimator  will  become  minimum variance  unbiased

estimator, because it is attaining the lower bound. 

So, there cannot be another unbiased estimator which will have the variance smaller than this

bound.  So,  this  is  one  nice  way of  proving that  a  given estimator  is  minimum variance

unbiased estimator; however, in the case when it is not attained, then it is difficult to proof the

minimum variance unbiased estimator using this approach, for that we will take up another

case or another approach here. So, let me start with the some of the standard distributions, let

us consider say binomial distribution with parameters n and p, where n is known. So, the

parameter is actually p and p x any value between 0 and 1.

So, we have to consider the estimation of p here. Now, easily you can see that X by n is an

unbiased estimator of p, X by n is unbiased for p and also let us look at what is variance of X

by n variance of this is simply p into 1 minus p by n. Now, let us look at the lower bound,

here if it is unbiased then the lower bound is simply equal to 1 by the information measure.

So, here we can calculate this the density function is n c x, p to the power x into 1 minus p to

the power n minus x. So, we take log of this that is equal to log of n c x plus X log p plus n

minus x log 1 minus p.



So, derivative of this with respect to p will give x by p minus, n minus x by 1 minus p, which

we can write as x minus n p divided by p into 1 minus p. So, in order to apply the lower

bound, we calculate the information and the information term is equal to n times expectation

del by del theta log f x 1 theta square since, in this case we have only one observation. So, n

will not be there we simply calculate this. So, we have already evaluated the derivative del

log f x p by del p now, we square rate it and then take the expectation.
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So, that gives us expectation del log f x p by del p whole square that is equal to expectation of

X minus n p square divided by p square into 1 minus p square. Now, this is nothing, but the

variance of X that is n p into 1 minus p in a binomial distribution. So, you get it as n by p into

1 minus p. So, the FRC lower bound for the variance of an unbiased estimator of p is p into 1

minus p by n. Now, in this particular case you observe, here variance of X by n was equal to

p into 1 minus p by n which equals variance of X by n here.

So, X by n is uniformly minimum variance unbiased estimator of p. So, that is uniformly

minimum variance unbiased estimator of p. So, you can see here the method is quite useful in

actually proving that a given estimator is UMVUE are not. Now, let  us take say poisson

example. So, suppose we have a random sample from poisson distribution with the parameter

lambda. So, naturally we want to estimate lambda now, let us consider the density function e

to the power minus lambda, lambda to the power x by x factorial, log of f that is equal to

minus lambda plus X log of lambda minus log of x factorial. So, if we consider the derivative



of this with respect to lambda, then we get minus 1 plus x by lambda, that we can write as x

minus lambda by lambda.

So, expectation of del log f by del lambda square that will be equal to expectation of x minus

lambda square by lambda square. Now, in the poisson distribution case expectation of x is

lambda therefore, this is nothing, but the variance and this is also lambda. So, this is lambda

by lambda square that is equal to 1 by lambda that gives us.
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So, you get here the information as n by lambda. So, the FRC lower bound for the variance of

an unbiased estimator of lambda is lambda by n. Now, consider say X bar, then expectation of

X bar is lambda, what is variance of X bar? Variance is equal to lambda by n, which is equal

to this FRC lower bound, this proves that X bar is UMVUE of lambda. In this particular case

in the poisson example, I had given several unbiased estimator for s square I had given X 1

plus X 2 by 2 I had considered each X i is also unbiased for lambda, but you can see that

among all of them X bar will be preferred, because this is the uniformly minimum variance

unbiased estimator.

Let us take another popular example, that is the normal distribution. So, let us take say X 1, X

2, X n, following normal mu sigma square. Now, as before we will consider different cases

sigma square is equal to sigma naught square, that is known. In that case we want estimate of

say UMVUE of mu. So, if we write down the distribution here 1 by sigma root 2 pi. So, here



it will become sigma naught e to the power minus 1 by 2 sigma naught square x minus mu

whole square. So, log of f is equal to minus log of sigma naught minus half log 2 pi minus x,

minus mu square by 2 sigma naught square.

So, if we consider derivative of this with respect to mu, we get simply x minus mu by sigma

naught  square.  So,  expectation  of  del  log  f  by  del  mu  whole  square,  that  is  equal  to

expectation x minus mu square by sigma naught to the power 4. Once again in the normal

distribution this is reducing to the variance term, that is expectation of x minus mu square is

variance, that is sigma naught square by sigma naught to the power 4 that is 1 by sigma

naught square.
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So, information contained in this will be n by sigma naught square in the sample. So, the

Frechet-Rao-Cramer  lower  bound  for  variance  of  an  unbiased  estimator  of  mu  is  sigma

naught square by n. Now, if you consider say X bar then expectation of X bar is mu and what

is variance of X bar? That is sigma naught square by n that is equal to this value. So, X bar is

UMVUE of mu, let us take another case when say mu is known and we want to estimate say

mu is equal to mu naught is known and we want sigma squares estimator.

So, here the density function will be written as a function of sigma square 1 by sigma root 2

pi, e to the power minus x minus mu square by 2 sigma square. So, log of f becomes minus

half log sigma square minus half log 2 pi minus x minus mu square by 2 sigma square. So,



differentiation of this with respect to sigma square gives minus 1 by 2 sigma square plus x

minus mu square by 2 sigma to the power 4, which I can write as X minus mu square by

sigma square minus 1, 1 by 4 sigma 1 by 2 sigma to the power 1 by 2 sigma square. 
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So, if we consider expectation of del log f by del sigma square whole square that is equal to 1

by 4 sigma to the power 4 expectation of X minus mu by sigma whole square minus 1 whole

square.

Once again you look at this, X minus mu by sigma is a standard normal variable X minus mu

by sigma square it will follow chi square 1. So, expectation of this is equal to 1 and therefore,

this term reduces to the variance. So, variance is twice the degrees of freedom that is equal to

2 by 4 sigma to the power 4. So, you get 1 by 2 sigma to the power 4. So, the Fisher’s

information in this problem will be 2 n by 2 sigma to the power 4. So, the Frechet-Rao-

Cramer lower bound for variance of an unbiased estimator of sigma square is 2 sigma to the

power 4 by n.

Now, in this case let us consider see the maximum likelihood estimator for example, or the

method of moments estimator. So, that would be for example, 1 by n sigma X i minus mu

naught square. So, this is now you can see here X i minus mu naught by sigma that will

follow standard normal. So, some of squares will be chi square n. So, expectation of that is n.

So, this divided by n will have expectation 1. So, if you multiply by sigma square, we will get



sigma square. So, this is unbiased for sigma square, because we can see here as sigma X i

minus mu naught by sigma whole square that follows chi square on n.

So, expectation of n T is equal to n and variance of n T sorry this divided by sigma square

and this divided by sigma square that will be equal to 2 n. So, we will get variance of T as

equal to twice sigma to the power 4 by n, because this will go here and n square will come to

below. So, we will get 2 sigma to the power 4 by n, which is same as this value once again

here. So, T is equal to 1 by n sigma X i minus mu naught square it is the minimum variance

unbiased estimator for.

Obviously, you can see here that if mu was not known, then you could not have used this

estimator. So, this solution is specific to this problem, that is when we are dealing with one

parameter case mu naught is known to us.
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Let us consider say a random sample from exponential distribution with mean say theta. Now,

in this case the density function is this. So, log of the density function is minus log of theta

minus x by theta. So, the derivative with respect to theta will be minus 1 by theta plus x by

theta square that is x minus theta by theta square.

So, expectation of del log f by del theta whole square, that is expectation of x minus thet   a

square by theta to the power 4. In the exponential distribution with mean theta variance is

equal to theta square. So, this term becomes theta square by theta to the power 4, that is equal



to 1 by theta square. So, the information in the sample about theta is n by theta square and the

lower bound Frechet-Rao-C ramer lower bound for  variance  of  an unbiased estimator  of

theta is theta square by n.

If we consider X bar then expectation of X bar is equal to theta and variance of X bar is equal

to theta square by n. So, this will prove that X bar is minimum variance unbiased estimator

for theta in the case of negative exponential distribution, it is not necessary that the lower

bound is always attained. In fact, if you see carefully in each of these problems we have

calculated the derivative here. So, s function you can see here for example, s would have

become here n by minus n by theta plus sigma X i by theta that is n X bar.

So, this is linearly related with X bar and therefore, X bar must attain the variance lower

bound for its expectation. If you see the previous problem for the estimation of sigma square,

here del log f by del sigma square is this function. So, if we look at s function S X i sigma

square that would have become minus n by 2 sigma square, sigma X i minus mu square by

something which is a linear function of sigma X i minus mu whole square and therefore, it is

natural that sigma X i minus mu naught whole square by n will attain the lower bound here.

So, if you see the estimation of the poisson distribution case, here the derivative is equal to

minus 1 plus x by lambda. So, if you look at s function it would have become minus n plus

sigma X i by lambda, which is again linearly related with X bar therefore, X bar must the

lower  bound  for  the  variance  of  its  unbiased  estimation.  So,  in  all  these  problems it  is

naturally coming let me take another example, where it may not be natural and therefore, the

lower bound may not be attained.

Let us consider say, let x have a geometric distribution and we consider the following form

theta into 1 minus theta to the power x, where theta is any number between 0 and 1. So, here

the problem is of estimation of theta. So, let us look at log of f x theta, that is equal to log of

theta plus x times log of 1 minus theta. 
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So, if we consider del log f by del theta we get 1 by theta plus with a minus sign x by 1 minus

theta here. So, if we look at the expressions here expectation of del log f we can use the

moment structure of the geometric distribution. If we use that this is equal to expectation of 1

by theta minus X by 1 minus theta whole square. So, after simplification this turns out to be 1

by theta square into 1 minus theta.  So, since I have taken only one observation here the

information will remain the same and the lower bound for unbiased estimator of theta is theta

square into 1 minus theta. Now, here theta is not the mean actually, if you look at the mean of

this distribution that will be 1 minus theta by theta.

So, X will attain the lower bound for that for the variance of an unbiased estimator for 1

minus theta by theta, but suppose we are considering estimation of theta, if we are estimating

theta here, then it will not be attained. So, you can see here, what is the interpretation of say

theta here,  theta is  the probability of X is  equal  to 0,  because if  in the probability  mass

function we put X equal to 0 here I get theta. So, if I define an estimator for theta as say delta

X is equal to 1 if X is equal to 0 it is equal to 0 if X is not equal to 0; that means, if X equal to

1 2 and so on.

Then expectation of delta X will be equal to 1 into probability X is equal to 0 plus 0 into

probability  X  not  equal  to  0;  that  means,  it  will  be  simply  equal  to  theta  and  what  is

expectation of say delta square X, that will also be theta. So, variance of delta X that will be

equal to theta minus theta square that is equal to theta into 1 minus theta. Now, here if you



compare with this lower bound, here lower bound is theta square into 1 minus theta and theta

is any number between 0 and 1. So, this one will be naturally bigger than this. So, the lower

bound is  not  attained. So, we do not know whether  delta  is  minimum variance unbiased

estimator here, we may try another approach here.

Let us consider expectation of t x is equal to theta, if we consider this then we will get sigma t

x into theta into 1 minus theta to the power x is equal to theta as x varies from 0 to infinity,

that will give me t 0 into theta plus t 0 into theta into 1 minus theta plus sorry plus t 1 plus t 2

into theta into 1 minus theta square and so on. is equal to theta. Now, you look at this, what

we are getting that coefficient of theta here if you see. So, this you can cancel out actually, t 0

plus t 1 into 1 minus theta plus t 2 into 1 minus theta square and so on is equal to 1 this is true

for all theta belonging to the interval 0 to 1.

Now, if you see this carefully what is the solution, see if you look at the coefficient of say

theta here theta will have coefficient t 1 see for example, if I look at the coefficient of the

constant term, constant term is t 0 plus t 1 plus t 2 and. So, on that should be equal to 1, if you

take coefficient of theta then you get minus t 1 minus 2 t 2, then in the next 1 also minus 3 t 3

and so on, that should be equal to 0 then if you look at the coefficient of theta square you will

get t 2 then here in the second one, it will become 3 t 3 and. So, on.

So, if you solve this solving this, we get t 0 is equal to 1 t 1, t 2 and so on is equal to 0 which

is nothing, but this t function then it is becoming same as this. 
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So, we have proved otherwise, that t x that is equal to delta x is UMVUE, because this is the

only unbiased estimator, which we obtained through solving the equation itself;  however,

using the method of lower bounds we are not able to prove this result here. Now, many times

we may not be interested directly in the theta itself, we will be interested in some function say

g theta of theta. In that case what we can do is we can modify this lower bound formula like.
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So, FRC lower bound for estimating a function g theta of theta. So, let me call it phi. So, we

will write variance of delta greater than or equal to 1 by n times expectation del by del phi log

of f star x phi, because f x theta density now I am writing as f star x phi, because we have

substituted theta by g inverse phi in whatever form we are able to do that. So, if you look at

this derivative here del by del phi, log of f star x phi, you can apply the chain rule you can

write it as del by del theta log of f x theta into del theta by del phi, this you can write as del

by del theta log of f x theta divided by g prime theta. So, if you substitute this function here,

we get variance of delta greater than or equal to g prime theta square divided by n times

expectation of del by del theta log of f x theta whole square, that is equal to g prime theta

whole square by the information in the sample about theta. 

That means, if we have the lower bound for variance of an unbiased estimator of theta then

from there we can derive for any other function what we have to do, we have to multiply by

the lower bound by g prime theta square. So, this we can say it is equal to g prime theta

square into the  Frechet-Rao-Cramer  lower bound for  theta.  So,  this  new formula  can be

obtained.  Moreover, the  condition  for  obtaining  the  lower  bound for  attaining  the  lower

bound that will remain the same, because the condition is coming only from the Cauchy-

Schwarz inequality, which was dependent upon the estimator being linearly related with s x

theta. Now, the g theta function does not affect that thing. So, the condition for the condition

for attaining the f remains the same.
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That is your delta x must be linearly related with S X theta with probability one. Tomorrow’s

class, we will be considering further properties and further ramifications of this lower bound,

as  well  as  we  will  see  some  extensions  there  can  be  2  types  of  extensions,  one  is  the

extension to the higher dimension; that means, if in place of 1 dimensional parameter I have

several dimensional parameter, then what will be the form of the Row-Cramer inequality.

Similarly, here we have used first order derivative in the lower bound now, if we consider

second and higher order derivatives then the level of the inequality can be changed. So, they

are generalization into another direction.

Another  thing is  that  whenever  we are considering differentiation in  some sense,  we are

taking the limits suppose, we do not take the limits in place of that we write the difference for

example, we are saying derivative. So, we are writing down the value of the function at two

points theta and theta plus delta say. So, we consider the difference there and then look at the

inequality, that inequality will be called the equality without the regularity condition, because

when we are having regularity conditions then we are considering the derivative and other

things,  but  if  that  is  not  satisfied then what.  So,  we will  have another  extension  in  that

direction.

 So, in the next lecture, we will be considering extensions to these things and then further

applications of this that is all for today’s lecture.


