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In the last lecture,  I have introduced the concept of interval estimation and I discussed 1

method of constructing the confidence intervals  with a given confidence coefficient.  This

method is the method of pivoting and we constructed the confidence intervals for parameters

of normal populations  when we have 1 sample or 2 sample problems. Today, I  will  also

discuss briefly in the confidence intervals for proportions.

That means we are dealing with a binomial problem, for example we may have people who

favor a certain proposition by the government, people who can be categorized as 1 type in a

population.  So if  we are doing the sampling from there then to construct  the confidence

intervals we can use the binomial approximation to the normal distribution.
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So let us consider confidence intervals for proportions. So typically we will have the data like

this that we have a sample of n observations and out of that we have X number of successes.

So let  us define say the sample proportion as  X/n.  We want  to  construct  the  confidence

interval for the parameter p that is the proportion of successes in a binomial population. So

we can consider say P hat-small p/square root pq/n.



This converges to normal 0, 1 as n tends to infinity. This result is known. Now for n large, we

can approximate p/P hat and q/Q hat=1-P hat. So we can then write P hat-p/square root of P

hat Q hat/n as approximately normal 0,1 random variable. So we can use the pivoting method

by considering the interval from –z alpha/2 to +z alpha/2=1-alpha because we are considering

the 2 points on the standard normal curve.

This is z alpha/2 that is this probability is alpha/2 and if this probability is alpha/2 then this is

–z alpha/2 so this in between probability is 1-alpha. So the probability of P hat-p/square root

of P hat Q hat/n this is approximately 1-alpha. So we can construct the confidence interval

from here. We can adjust the terms.
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So this is equivalent to we can write –z alpha/2 square root P hat Q hat/n <= P hat-p <= z

alpha/2 square root P hat Q hat/n=1-alpha or probability of P hat-z alpha/2 square root P hat

Q  hat/n  <=  p  <=  P  hat+z  alpha/2  square  root  P hat  Q  hat/n=1-alpha.  So  we  have  the

confidence interval for p here.

That is from P hat-z alpha/2 square root P hat Q hat/n 2 P hat+z alpha/2 square root P hat Q

hat/n.  So  here  P  hat  is  the  sample  proportion  X/n.  So  this  is  an  approximate  so  an

approximate confidence interval for p is constructed. We may even consider comparing 2

binomial proportions. For example,  it  could be like proportion of the people who drive a

certain vehicle in city A and proportion of the people who drive a certain vehicle in city B.



So the proportions may be different p1 and p2 and we may want to have a confidence interval

for the difference to have an estimate whether 1 of them is less than the other or equal. So we

may consider confidence interval for difference in proportions. Let us consider say let X and

Y be independent binomial random variables with X following say binomial m, p1 and Y

following say binomial n, p2.

So here obviously m and n are known. We want confidence interval for p1-p2, let us say it is

equal to p. Once at the end, we will make use of the approximation of binomial distribution to

the normal.
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So if we consider say P1 hat=say X/m, P2 hat=say Y/n. Then P1 hat-P2 hat-p1-p2/square root

p1q1/m+p2q2/n  where  here  I  am using  q1=1-p1 and q2=1-p2 and Q1 hat=1-P1 hat  and

capital Q2 hat=1-P2 hat. So this is approximately normal 0, 1 as m and n tend to infinity. So

then  we  can  write  we  can  replace  p1q1/P1  hat  Q1  hat  and  p2q2/P2  hat  Q2  hat  to  get

approximate statement of the following nature.
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That is probability of –z alpha/2 <= P1 hat-P2 hat-p1-p2/square root of P1 hat Q1 hat/m+P2

hat Q2 hat/n. This is <= z alpha/2=1-alpha. So once again as before we can simplify, so we

can write probability of P1 hat-P2 hat-square root P1 hat Q1 hat/m+P2 hat Q2 hat/n z alpha/2

<= p1-p2 <= P1 hat-P2 hat+P1 hat Q1 hat/n+P2 hat Q2 hat/n z alpha/2=1-alpha.

So we have an approximate confidence interval for p1-p2 of this form that is P1 hat-P2 hat+-

square root P1 hat Q1 hat/m+P2 hat Q2 hat/n z alpha/2 where again z alpha/2 is the point on

the normal distribution curve. This method of pivoting as I have explained can be used for

various distributions whenever we are able to find out the pivoting quantity. Usually as we

have seen it can be dependent upon the sufficient statistics.

And it is also coming from the theory of Neyman–Pearson’s based test so now I will move

over  to  the  concept  of  the  testing  of  hypothesis.  Let  us  look  at  the  basic  notation  and

terminology for the problem of testing of hypothesis.
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Let me introduce the problem first. So I have mentioned to you the problem of statistical

inference  that  is  we  are  considering  certain  population  and  we  are  looking  at  its

characteristics. So for example we may be looking at the average heights of the say adult

males in an ethnic group. We may be considering say average precision or the precision of a

measuring instrument, measuring device which is used for measuring something.

We may be considering the amount of symmetry or asymmetry present in curve. We may be

interested in estimating the average life of an electronic component and so on. Now in these

we are making that we are having no prior knowledge about the parameter so we consider

estimation, but there could be another type of thing. For example, we have a certain brand for

a particular item.

Now a new brand of that item has been introduced in the market. Naturally, the manufacturer

or the shopkeeper or the customer will be interested to know whether the average longevity

or the average life will be more than the previous brand. Suppose there is a drug which is

being used for curing a certain disease. Now a R&D division of a drug company, it introduces

a new drug in the market.

It finds out or it invents a new drug. Now certainly everybody will be interested to know

whether the new drug is more effective in curing the same disease than the previous. They

may be looking at its efficiency in the terms of less time taken the proportion of people who

are getting cured that could be more or the average cost of the medicine and so on. There can

be several factors that can be used to test.



That means here we may have some information about the parameter, but we want to test. So

this is called the problem of testing of hypothesis. We can roughly say that it is a statement

about since we are dealing with the parametric methods we can say it is some statement about

the parameters of a population. In general, a hypothesis would be any statement about the

probability distribution.

For example, you may even say that okay we want to test whether the data is coming from a

normal population or the data is coming from a gamma population that could be a more

general statement of the testing of hypothesis problem, but in the beginning we will restrict

attention to the parametric methods that means the population is identified but we want to test

something about the parameters values, whether the values equal to something or it is less

than something and so on.

So we pose the problem in the following fashion. So let X1, X2, Xn. At our disposal, we have

a random sample. Let X1, X2, Xn be a random sample from a population say p theta, theta

belongs  to  parameter  space  theta.  This  theta  could  be  a  scalar  or  a  vector.  A statistical

hypothesis is an assertion about the parameter of the population. So for example, a drug for

curing a certain disease is found to be effective in say in 50% of the cases.

So if we use the notation say p for the proportion of patients who are successfully cured using

this drug then with this drug p=1/2 or p=0.5. Now a new drug is introduced and let p star be

the proportion of patients who get cured using this. Then we will be interested to find out

whether p star>0.5 or not. So I have stated the problem in a very simple terms that we want to

make some statement about the parameter of a population.

So here it could be like you take observation that means you can see that a sample of patients,

out of that you find out how many get successfully cured and not and based on that you will

conduct a statistical procedure. So let us discuss this. So firstly we will try to write down a

hypothesis in this fashion.
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We write a hypothesis like this. We describe a hypothesis as say H0 p star >0.5 or some we

may say H1 p star=0.5 or H2 say p star<0.5 or say H3 p star=0.75 and so on. These are

various statements. In each of them we are actually identifying the value of the parameter. In

some cases, we are telling a range, in some cases we are exactly specifying. Now in general,

hypothesis  testing  problems  the  common  formulation  that  we  give  we  firstly  have  a

statement.

For example, we may like to say p star=0.5 or p star>0.5 then if we make a statement this is

called a null hypothesis and then we test against another one so that is called an alternative

hypothesis. Now this type of formulation for testing of hypothesis problems was developed

by J. Neyman and E.S. Pearson in 1926 onwards in a series of papers where they developed

this theory.

In this formulation, we have a null hypothesis say H0 so let us say if we are considering say

normal distribution with parameter theta and say variant sigma square. We may like to test

whether theta=0 against an alternative hypothesis say H1 theta=1. We may write in different

ways also like H0 theta is <= 0 against say H1 theta is > 0.

We may like to write H0 sigma square=1 against say H1 sigma square is > 1. We may like to

write H0 mu sigma square=0,1 versus H1 mu sigma square is != 0,1 and so on. So there can

be  various  hypothesis,  which  may  be  required  to  be  tested.  Now  we  make  a  simple

classification here.



When the value of the parameter  specifies  the distribution itself  for example here in this

binomial testing problem if we say p star=0.5 then the distribution is completely specified.

This is called simple hypothesis and when we say p star<0.5 etc, then the distribution is not

completely specified. This is known as a composite hypothesis. For example, if I write mu

sigma square=0,1 then this is a simple hypothesis.

But  if  I  say  theta=0  then this  is  not  a  specified  sigma square.  So  this  is  the  composite

hypothesis. So we have the concept of a simple hypothesis.
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If a hypothesis completely specifies the parameters of a distribution then it is called a simple

hypothesis, otherwise it is called a composite hypothesis.
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So for example this is a composite hypothesis, this is a simple hypothesis. This hypothesis is

composite because this does not specify sigma. This is composite. This is simple. Sorry this is

theta here. This is composite, these are all composite. Now a statistician based on a sample

will like to test the hypothesis. That mean he will give a procedure and he will decide. That

procedure will try to make a decision in favor of a certain hypothesis.

For example, we may say suppose we consider a sample of 100 patients, we find that nearly

75% of the patient that is 75 patients get cured from the new drug. Then certainly we may

tend to believe that p star>0.5. On the other hand, we may find that only 25 out of 100 get

cured then we may say p star<0.5. Now this is something like you can say Lehman’s kind of

thinking that we can certainly say that if out of 100 75 get cured then it is too large than 50%.

And therefore we may tend to believe that p star>0.5, but what happens suppose it is in the

sampling  that  we  have  done.  It  turns  out  that  out  of  100  say  57  patients  get  cured

successfully, then  would  we  still  be  in  favor  of  the  statement  p  star>0.5  with  the  same

convincing argument than the previous one? Can we say that it is significantly higher? The

effectiveness is significantly more than p star=0.5.

Now that is the question that a statistician would like to answer in a more effective fashion.

Similarly, if we are considering say the hypothesis theta=0 and theta=1, now if we consider a

random sample X1,  X2,  Xn from the normal  distribution,  we may consider  X bar as an

estimate of theta and then you may say that okay if X bar is 0 then accept H0 and if X bar=1

then accept H1.

Now a thing is that if we are considering the sampling from the normal population then X bar

is  also  a  normal  distribution  with  mean  theta  and  variant  sigma  is  square/n.  So  it  is  a

continuous distribution so the probability that X bar is 0 or the probability that X bar is 1 both

are equal to 0. Therefore, it does not make sense to give a test of this type and not only that.

See what happens if X bar is say equal to -1?

What happens if X bar=say 1/2 or what happens if x bar=2? Therefore, in place of having a

point test we may have to give a range so that we can significantly differentiate between the 2

hypothesis H0 and H1.
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So we can say that a test of statistical hypothesis is a procedure to decide whether to accept or

reject a given hypothesis. Now let us consider say and the decision will be based on sampling

scheme based on sample, so let us take an example say X follows binomial say 3, p and our

hypothesis is whether p=say 1/4 or H1 p=3/4. So this is that means we have considered a

sample based on 3 observations out of which we say that X is the number of successes.

Now a Lehman’s procedure could be that we may consider a test procedure can be let us call

it T1 procedure that if X=0 or 1 then decide in favor of H0 and if X=2 or 3 then decide in

favor of H1. So now you can see that this procedure is a heuristic procedure what we are

saying is that if X=0 or 1 then it means that number of the proportion of the successes is

smaller.

And therefore we may say that the probability of success should be smaller and therefore we

go in favor of the hypothesis p=1/4. On the other hand, if out of 3 tosses or out of 3 trials you

get 2 or 3 successes then you may say that the probability of success should be high and you

feel that probability p=3/4 must be the correct statement and therefore we decide in favor of

H1.

So we say we give a statement accept H0 and here we say accept H1 or we can say reject H0.

Since in the original problem we write 1 hypothesis as the null hypothesis that means the

initial  one  and  another  one  as  alternative  hypothesis.  We may  make  the  statements  like

rejecting H0 or accepting H0 or we may say accepting H1 if we say reject H0 and so on.
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Now based on this we are able to so basically what we are doing. We are having the sample

space here consisting of 4 points 0, 1, 2, 3 and we are dividing it into 2 parts, we call it

acceptance region that is 0,1 and the A complement that is rejection region we call it 2,3 so

this is called acceptance region and this is the rejection region.
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So basically a test of hypothesis partitions the sample space into 2 disjoint sets say A and R

where A corresponds to the acceptance of H0 and R corresponds to the rejection of H0 or you

can say acceptance of H1. So that is why this A we call to be acceptance region and R we call

to be the rejection region or critical region. Since we are basing our decision on the outcome

of a random experiment that means we are doing the sampling.



Therefore, certainly there is a chance of error in the form of introducing this type of error so

we call it  2 types of errors. So when we conduct a test of hypothesis based on a random

sample, we are likely to make 2 types of errors. So first one we call type 1 error that means

rejecting H0 when it is true and second one is type 2 error that is accepting H0 when it is

false.

Now the consequences  of  the 2 types  of  errors can be of various  types  depending upon

different problems. Let us take an example related to say medicine.
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So in a medical experiment say tests are conducted on a patient to detect the presence of a

certain disease say D okay. So now based on the tests we may conclude so your hypothesis is

like H0 D is present that means the person has the disease or H1 D is not present. So now you

see we may decide to accept or reject H0. Now what are the consequences? So if you look at

type 1 error that means we are concluding that rejecting H0.

That is, we conclude that D is not present whereas in fact it is present then it may lead to fatal

consequences for the patient.
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If we consider say type 2 error that means you conclude that D is present whereas in fact it is

not, then it may lead to harassment of the patient in terms of unnecessary treatment leading to

monetary loss and health side effects. Now therefore in any given problem it is of important

to control the 2 types of errors. So we give measures for these 2 types of errors. 
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We consider say alpha=the probability of type 1 error that is the probability of rejecting H0

when it is true and similarly we consider beta that is equal to probability of type 2 error that is

equal to probability of accepting H0 when it is false. So in any given problem it will be

interesting or you can say it will be desirable to control both the errors alpha and beta.

Basically, we will like to have them to be a minimum. So basically it will be the goal to

minimize both alpha and beta; however, it is not practically possible. The reason is that if I



reduce alpha then beta will increase and if I reduce beta then alpha will increase. You can

think from this example that I gave.
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For this example, let us calculate, let us consider this test T1, what is alpha here? Alpha is the

probability of rejecting H0 that means X=2 or X=3 when it is true that means when p=1/4

that means=probability of X=2 when p=1/4+probablity of X=3 when p=1/4. So that is equal

to  3  C 2  1/4 square  3/4+3 C 3  1/4 cube.  So you can  write  these  values.  It  is  equal  to

9/64+1=10/64=5/32.

Let us look at beta, beta=probability of X=that is probability of accepting H0 when it is false.

So we accept H0 when X=0 or X=1 when it is false that means when p=3/4. So that is equal

to probability of X=0 when p=3/4+probability of X=1 when p=3/4. Once again we calculate

these quantities, it turns out to be 3 C 0 1/4 cube+3 C 1 3/4*1/4 square. So once again it is

equal to 10/64 which is equal to 5/32.
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Now I design another test say let us consider another test say T2 okay. That is accept H0

when say X=0 and reject H0 when X=1, 2 and 3. For this test, let us calculate say alpha let

me call it alpha 1 say for the test this one I will call alpha 1 and beta 1. Now here I will call it

alpha 2 and beta 2 so that is equal to probability of X=1+probability X=2+probability X=3

when H0 is true that is p=1/4.

So  that  is  equal  to  3  C  1  1/4*3/4  square+3  C  2  1/4  square  3/4+3  C  3  1/4  cube

=27+9+1/64=37/64 and let us look at say probability of type 2 error then that is becoming

probability of X=0 that is probability of accepting H0 when it is false. So this is simply equal

to 1/64. So you can see here that by using this particular test we have been able to reduce beta

2 from 10/64 to 1/64.

But at the same time the probability of type 1 error has increased from 10/64 to 37/64. In the

same way, we can consider reduction of alpha but then beta will increase.  So therefore a

practical way which the Neyman and Pearson suggested was that we fix an upper level for

probability of 1 type of error and then try to find out a test procedure for which the other type

of error is minimum or we can say 1-the probability of the other type of error is maximum.

So as a convention it was considered we define power of a test say let us call it gamma that is

equal to 1-beta that is probability of rejecting H0 when it is false.
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So it was proposed to find the tests which for a given value of maximum alpha will have

smallest  beta  or  maximum 1-beta  that  is  gamma.  So this  was  called  most  powerful  test

because maximum power most powerful test of size alpha because we put the maximum

value of alpha that is called the size of the test or the level of significance. There are various

names of it.

And we consider the test which will have the minimum probability of type 2 error or the

maximum power that most powerful test. So the theory of most powerful test, so for simple

versus simple case, a complete solution was obtained by Neyman and Pearson in 1926 and

thereafter it was analyzed to the concept of uniformly most powerful test later on by the same

authors and for composite hypothesis.

And also for some other situations where even uniformly most powerful test does not exist so

they considered certain restricted class of test called unbiased test and among those tests they

found the most powerful test. This theory of most powerful test was developed by Neyman

and Pearson in 1926 to say 1937 in this period. So firstly they considered the solution for the

simple versus simple case.

So suppose we have the problem let us write in terms of observation so X is a following fx

okay and we make the hypothesis whether fx=f0x or H1 fx=f1x. So consider say Tx=f1x/f0x.

The  most  powerful  test  is  to  reject  H0  if  f1x/f0x>k.  Basically  this  is  not  the  complete

description we also have the range for example we may have discrete distribution.
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And in that case we also have reject H0 this, accept H0 if f1x/f0x<k and there was also a

portion=that is reject with probability say p if f1x/f0x=k. Now this constant k is chosen to

satisfy the size condition. However, even importantly to ask that it is not only sufficient it is

also  necessary  condition  for  the  most  powerful  test.  So  simultaneously  they  showed the

existence of such a test, existence of the most powerful test.

And also that if there is a most powerful test, it has to be of this form. Now this turned out to

be extremely useful result and let me explain through one example.
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Let us consider say a simple testing problem say X1, X2, Xn say follow normal 0 sigma

square.  We were  having  the  testing  problem  say  sigma  square=1  against  say  H1  sigma

square=say 5. Now let us take let us consider the density function here of all the observations.



So x=x1, x2, xn where your X=X1, X2, Xn. So this is equal to 1/root 2 pi to the power n

sigma to the n e to the power-1/2 sigma square sigma xi square.

So we consider f1x/f0x that means the ratio of the densities when sigma square=5 and when

sigma square=1. So this will become equal to now this 1/root 2 pi to the power n will get

cancelled out. You get 1/root 5 to the power n e to the power-1/10 sigma xi square/1 e to the

power-1/2 sigma xi square. So we consider the rejection region. This is > some k.

Now this you can write in a modified fashion because this constant I can adjust on the right

hand side and it will become e to the power 1/2-1/10 sigma xi square > some k1. I can take

logarithm here so it will reduce to sigma xi square > some k2. Now we have to choose k2

such that probability of sigma xi square > k2 under sigma square=1=alpha.

So you can easily see that when I am doing the sampling from the normal distributions I can

actually calculate the distribution here.
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So under when sigma square=1 then I have xi is following normal 0,1 this will imply that

sigma xi square will follow chi square distribution on n degrees of freedom. If that is so then

this statement is reducing to let us call it say let W denote a chi square n random variable then

we have alpha=probability W>k2 that means if I am considering a chi square curve on n

degrees of freedom, then this k2 point is actually chi square n alpha.



That is reject H0 if sigma xi square is > chi square n alpha. So for the most powerful test the

rejection region is of this form. So this is the most powerful critical region for H0 sigma

square=1 against say H1 sigma square=5. Let us consider little generalization of this problem.

See you notice here, here I took the null hypothesis 1 and in the alternative sigma square was

5 which was slightly bigger.

And therefore you have seen here in the denominator we had this -1/2 here and when we took

the difference this becomes a positive quantity and therefore the region is in the form sigma

xi square>k2. On the other hand, suppose I modify this. Suppose I consider suppose we have

alternative say H1 star sigma square=say 1/2 if that is so then in this particular place we will

get sigma xi square.

And if that is happening then you will get negative quantity here. So if I take log the region

will get reversed.
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Then the critical region will be of the form W < some k3. So if that is so then if you consider

the region then if I want the probability alpha then this should be chi square n1-alpha that is

W will be < chi square n1-alpha.
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So we can generalize to this problem suppose I can see that sigma square=sigma 0 square

against sigma square is equal to sigma 1 square and if sigma 1 square>sigma 0 square then

reject H0 if W>chi square n alpha and if sigma 1 square<sigma 0 square then reject H0 if

W<chi square n1-alpha.  This is also pointing out to some important  characteristic  of this

distribution.

Then we are considering normal 0 sigma square in the density in the exponent we are having

sigma xi square as a sufficient statistics and there is a property here actually. This is called a

monotone  likelihood  ratio  property,  which  is  satisfied  here  and  therefore  the  region  of

rejection will be decided by the direction in which sigma xi square is taking value.

So since you can also think of it as a maximum likelihood estimator and from there also you

can see that for the larger values of sigma xi square I will favor the hypothesis H1 and for the

smaller values I will favor H0 and similarly in reverse fashion we will consider here for the

smaller value I will favor H1 here and for larger values I will favor H0 in the other case when

sigma 1 square is < sigma 0 square.

In the following lecture, I will give you the test for various hypotheses for the parameters of

the normal distributions which are based on this theory. Basically, these results have been

extended to the composite hypothesis. For example, I may consider here sigma square<sigma

0 square  against  sigma square>sigma 0  square  and  vice  versa.  When we consider  those

situations we have the uniformly most powerful test.



When we have 2 parameter situations then we have uniformly most powerful unbiased tests

of these hypotheses. Now without mentioning these things I will be explicitly giving tests for

the various normal population problems in the next lecture.


