
Statistical Methods of Scientists and Engineers
Prof. Somesh Kumar

Department of Mathematics
Indian Institute of Technology – Kharagpur

Lecture - 18
Multivariate Analysis – III

So, we continue our discussion on the multivariate normal distribution and its properties. We

have seen various characterizing properties, which also helped us in giving an alternative

definition of the multivariate normal distribution. Now, we are trying to see its connections

with chi square distribution as in the case of univariate normal distribution.
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For that purpose, I stated Fisher-Cochran Theorem and another Lemma, which is saying that

Y prime A Y will have a chi square distribution. So, this is giving a necessary information

condition that if are having standard random variables, then if I considered Y prime A Y that

is a quadratic form. This will have chi square k. We know that Y prime A Y has a chi square

k.

But,  if  I  consider  any A here,  then  for  idempotent  matrix  this  will  be  true.  Now, let  us

consider further results on this. The next result is that if X has a Np mu sigma distribution,

then let us consider say Q that = X-mu transpose A X-mu, then that follows chi square k, this

is if and only if sigma A sigma A - A sigma is null and in this case, you will have k = trace of

A sigma.
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Let us look at the proof of this, so you can write X-mu = some BZ, if you remember the

representation  that  I  obtained  for  necessary  and  sufficient  condition  for  the  multivariate

normal distribution, we were able to write a multivariate normal as mu+BZ, where Z is a

vector consisting of the standard normal independent random variables of dimension N. So,

let us consider the decomposition of sigma as B B transpose, rank of B is m, which is also the

rank of sigma.

And the quadratic form Q that is X-mu prime A X-mu. So, since X - mu is B Z, this becomes

Z prime B prime A B Z that we can write as Z prime and this B prime A B, we can write as

sum matrix C. Now, if we implement this result that if I am having a collection of a standard

normal random variables, then Y prime A Y has a chi square k, if and only if A is idempotent.

So that condition will be applied to C and also the trace and rank of A will be = k here. So, if

we apply this result, Q will follow chi square k if and only if C is idempotent and k = trace of

C that is rank of C. Now, C is idempotent this condition is equivalent to, so C = B prime A B.

So, B prime A B is idempotent so this you can write as B prime A B * B prime A B = B prime

A B.
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So I bring it to the left hand side, so we can write as A B B prime A - A B = a null matrix.

Now, B B prime is sigma, so this becomes B prime A sigma A - A B = null matrix. Again, this

is equivalent to I can pre-multiply by B and I can post-multiply by B prime, this is equivalent.

Now, a question is that why is this equivalent because if I am having this, I can consider here

a transformation from here to get this thing here.

So, this will be implying C sigma A sigma A - A sigma = null. Now, k = trace of C that =

trace of B prime A B that = trace A B B prime because of trace of some matrix C*D is same

as trace of D*C, so trace of A sigma. Now as a remark, let me mention here if sigma is non-

singular, then I can multiply by sigma inverse and sigma inverse here, then this condition is A

sigma A = A.

In that way, actually you can say that sigma is a generalized inverse of A that condition will

be there. Now before going to, we will also discuss in detailed the noncentral  chi square

distribution, however, let me talk about certain characterizations of the multivariate normal

distribution now. Some characterizations of multivariate normal distribution, let us consider

let X1 and X2 be independent p-dimensional random vectors such that X = X1 + X2 follows

Np.
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Then X1 and X2 are also Np. Let us look at the proof of this, let us consider say a linear

combination of the components of X. So that is becoming L prime X1 + L prime X2. Now,

since X1 and X2 are independent, L prime X1 and L prime X2 are also independent. Now,

there is a characterization of the univariate normal distribution in terms of the decomposed

terms that  means if  I  say X1 and X2 are univariate  normal,  such that  X1 + X2 follows

univariate normal, then each of X1 and X2 will be univariate normal.

So from this, we conclude that from the known characterization of, we can say that L prime

X1 and L prime X2 are univariate normal. Now this L, I chose arbitrarily of p-dimension

since  L  belongs  to  Rp  is  arbitrarily  chosen,  we  can  conclude  that  X1  and  X2  are  Np

distributed random vectors. A second characterization is generalization of this, which let me

state in the full form here.

Let X1, X2, Xn be p-dimensional independent random vectors. Let us consider say Y1 = a

linear combination of say bi Xi, i = 1 to n and Y2 as an another linear combination of the

same where bi’s and ci’s, they are scalars. Let us consider say b as b1, b2, bn and c as say c1,

c2, cn. Then, we will have the following that is Xi’s are IID Np and b prime c = 0 implies Y1

and Y2 are independent.
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And secondly Y1 and Y2 are independent implies that Xi will follow Np for any i such that

Bi Ci is not 0 and Xi’s need not be identically distributed. Let us look at the proof of this, so

we can consider the vector Y1, Y2 let us call it say Y, I put them in the 2 dimensional form

here. So this is now 2p-dimensional, so V is 2p-dimensional. If I consider linear combination

of say T prime Y, then that will become say T1 prime Y1 + T2 prime Y2, where T = T1, T2.

If  I  am assuming that  Xi’s are  independent  random vectors,  so in  the  first  part  if  I  am

assuming that Xi’s are multivariate normal, then these are linear combinations of the, because

what I have done here, Y1 is a linear combination of Xi's, so this is becoming T1 prime sigma

biXi + T2 prime sigma ciXi that = Sigma bi T1 prime + ci T2 prime Xi. So, this is linear

combination of components of Xi.

So, T prime Y will be univariate normal. So this is for any T, this is 2p-dimensional, so y has

N2p distribution that is 2p-dimensional multivariate normal distribution. Now, let us consider

covariance matrix between Y1 and Y2, now that will be = because I have written this as b

prime  X,  see  basically  what  we are  getting  here  is  covariance  between Y1 and Y2 will

become covariance between sigma biXi and sigma ciXi.
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That will consist of, since Xi's are independent, this will reduce to b1 c1 dispersion matrix of

X1+b2c2 dispersion matrix of X2+b, I am taking n here, bncn dispersion matrix of Xn. As we

have assumed covariance terms between X1, Xi, Xj for i != j, they will be null. So, this is

nothing but b prime c sigma. If we are writing dispersion matrix of Xi = sigma, then this =

this.
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Now, if I am assuming here the b prime c = 0, then this is simply = null. So, we will get Y1

and Y2 are independent. So, this result is proved that if Xi's are independent and identically

distributed p-dimensional multivariate normal distributions where b1c1+b2c2+bncn, they are

0, then this Y1 and Y2 are independent. In particular, you may consider something like this.



For example, I take say X1-X2 and X1+X2, so then they will be independent. Suppose, I

consider say 2X1-X2+X3 and say I take X2+X3, then they are also independent because if I

consider here, 2*0-1+1 1*1, so that is going to be 0. If I consider say X1+X2+X3 and I

consider say -2X1+X2+X3, then here the product is -2+1+1, so they are also independent so

like that we can construct independent linear combinations here.

Let us look at the part B of this, in the second part, what we are saying is that if Y1, Y2 are

independent, then Xi's must be Np here for any distinct. So let us look at this, so we can make

use of,  this  is called actually  Darmois-Skitovic theorem. Let  X1, X2, Xn be independent

univariate  random variables,  then sigma biXi,  i  = 1 to  n and sigma ciXi,  i  = 1 to n are

independent, it implies that Xi’s will follow normal 1, if bici is not 0.
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And can be arbitrarily distributed otherwise for i = 1 to n. So, let us consider say L prime Y1,

so that = sigma bi L prime Xi and similarly, L prime Y2 = sigma ci L prime Xi. On this, apply

the Darmois-Skitovic theorem, then L prime Xi this will follow N1, if bici is not 0. So, L is

arbitrary vector in p-dimensional space, we conclude that Xi’s will follow Np, if bici is not 0.

Now, if you look at the statement this is again very powerful statement. What we are saying is

that  if  I  construct  linear  combinations  of  p-dimensional  random vectors  and  if  they  are

independent,  then each of  the terms in the linear  combination  will  have a  p-dimensional

normal distribution. Of course, we are putting a condition here that bici must be nonzero that

means the corresponding term should be there.



A third characterization is based on the decomposition that I obtained and that we gave as an

alternative definition of the multivariate normal distribution also. So, let us consider say Y =

mu  1  +  say  B1Z,  let  us  call  it  Z1  and  say  Y  =  mu  2+B2Z2.  Suppose,  these  be  2

representations  of  a  p-dimensional  random vector  in  terms  of  say vectors  Z1 and Z2 of

nondegenerate independent random variables.
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And this B1 is a p by m matrix, B2 is p by m matrix, rank of B1 is m and rank of B2 is also

m. We also assume that no column of B1 is a multiple of some column of B2. Then, Y

follows Np, so now you see here. I am actually using the representation that I gave as an

alternative definition of the multivariate normal distribution, but in that one, Z1 and Z2 are

vector of IID standard normal variables.

Here, I am saying is that this  is the vector of simply nondegenerate independent random

variables and then, just by putting a condition on B1 and B2, we are getting that Y must have

a  multivariate  normal  distribution.  So,  this  is  also  very  powerful  characterization  of  a

multivariate normal distribution. Let us consider say m = p, then B1 and B2 are nonsingular

and then we can write B1 as B2 B2 inverse B1.
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That we can write as a B2 and some matrix, this term we can write as some Q. Let us assume

say m is < than p. Let C be a vector which is orthogonal to columns of B1 and we write here

C prime Y that = C prime mu 1 + B1Z1, then that is becoming C prime mu 1+ C prime B1Z1,

now this will become 0. So, this is simply C prime mu 1 here. Now, that = C prime mu 2 + C

prime B2Z2.

Now, what I am getting here C prime B2Z2 = now this is a scalar, so we are getting that C

prime B2Z2 is a degenerate  random variable.  Now, we assumed that this  Z1 and Z2 are

vectors  of  nondegenerate  independent  random variables.  So,  here  I  am getting  this  as  a

degenerate random variable. So, this is contradicting our assumption unless we have C prime

B2 = 0.

Now, if C prime B2 = 0 is equivalent to saying that C is orthogonal to columns of B2. Now

let us look at this, I started with C to be a vector which is orthogonal to the columns of B1

and I am able to prove that C is now orthogonal to the columns of B2. So, this means that the

orthogonal column space of say B1 is a subspace of orthogonal column space of B2.

Now in this derivation, I have taken B1 B2, now I started with C to be a vector orthogonal to

the columns of B1 in place of that, suppose I write B2 here, then this statement will change

here, here I will get C prime mu 2 and here I will get B2Z2, so his will become C prime mu 2

and here then, I can write C prime mu 1 + C prime B1Z1. In that case, I will get the same

statement in the reverse way.



So, repeating the argument with an interchange in B1 and B2, we get orthogonal space of B2

is a subspace of orthogonal space of B1, so that means they are same. Basically, column

space are B1 and column space are B2 are same. This means that there exists a nonsingular

matrix Q such that B1 = B2Q. So, I have written here if m = p, then I am able to write to that

B1=B2Q and if  m < p  then  also  I  am able  to  obtain  a  nonsingular  matrix  Q such that

B1=B2Q.

So, this one and 2 give that all the time there will be a nonsingular matrix. Thus there always

exist a nonsingular matrix Q such that B1 = B2Q. Now we make use of this, so let us write

say Y-mu 2 that = B2Z2. So, this implies B2 prime B2 inverse B2 prime Y-mu 2 that = B2

prime B2 inverse B2 prime B2Z2 that = Z2. So, if I consider now Y-mu 1 that = B1Z1 that =

B2QZ1 this implies that B2 prime B2 inverse B2 prime Y-mu 1 that will be = QZ1.
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So, what we are getting is that Z2 and QZ1 they have the same distribution except for a

location change. Because both I am able to represent in terms of, see this is Y-mu 2, so mu 2

is the translation here and here I am getting QZ1 that is Y-mu 1 here. So, components of QZ1

they are independent. Now, the condition that no columns of B1 is a multiple of columns of

B2, then this implies that every column of Q contains at least 2 nonzero elements.

So by Darmois-Skitovic theorem, then we conclude that Zi’s follows normal N1, i = 1 to n.

So now Z1 = your components of this, let us call  it  as Z11, Z12, Z1n. So, what you are

getting here is that Y follows Np. So, these are the 3 characterizations, Now, we move over to

the actual density function.



If you remember here in the case of one dimension and 2-dimension distribution, we always

define a distribution and we talked about its probability and mass function and the probability

density function. In the case of p-dimensional normal distribution,  I have not yet actually

defined  the  density  function.  So,  one  major  reason  is  that  when  we  talk  about  higher

dimensions.

And if  there  is,  for  example  here I  mentioning sigma as  a  variance-covariance  matrix  is

positive semidefnite. So if it is a positive definite matrix, then it will have full rank, but if it is

not a full rank that means the rank say p-1 or p-2 or in general I am saying mn < p that means

there  will  be  some linear  relationships  among  the  variables  there.  If  there  are  complete

relationships there, in that case the density will exist on a subspace.

It will not exist on the fully space that was on p-dimensional space. So that is the reason that I

gave the definition of the multivariate normal distribution in terms of its linear combinations

and then in terms of an alternative representation like mu + BZ where Z is a collection of m

independent univariate normal random variables. So, there m was the rank. So that means I

am  able  to  actually  define  in  terms  of  alternative  you  can  say  characterization  of  the

multivariate distribution.

I  do not  necessarily  have to  write  the density  function,  but  now I  will  write  the density

function for the full space that means when I considered the full rank, then we talk about the

density function and actually, the representation that I have given, it will be exactly used for

deriving the density function. So, we talk about probability density function of a multivariate

normal distribution.
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So, let us consider X following Np mu sigma and I consider full rank, rank of sigma = say p.

if rank of sigma = p, then we can write X = mu+BZ, where B is p by p and Z is a vector of

independent, these are IID normal 0, 1. So, if that is happening and also this B B prime =

sigma and this Z = actually B Inverse X-mu. Now, if I have independent normal random

variables, I can write down the density function.

So, the joint pdf of Z = this Z1, Z2, Zp, so Z prime = Z1, Z2, Zp that is nothing but let me use

a notation f Z. So that = 1/2 pi to the power p/2 e to the power - 1/2 sigma Zi square. So that

will be = 1/2 pi to the power p/2 e to the power - 1/2 Z prime Z. Let me use capital letters

here, usually we write small letters for denoting the value of the random variable, but here for

the sake of convenience, I am using the capital letters here.
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Now, this Z is given in terms of this, so we write it here that = 1/2 pi to the power p/2 e to the

power - 1/2, now Z = this term here, so it is becoming X-mu prime B inverse prime B Inverse

X-mu. Now, if am assuming this B B prime = sigma, then sigma inverse = B B prime inverse

that = B prime inverse B inverse that will be = B inverse prime B inverse. So we can use this,

so this is simply becoming 1/2 pi to the power p/2 e to the power-1/2 X-mu prime sigma

inverse X-mu.

Now, if I am obtaining the distribution of X from here, then I have to calculate the Jacobian

here. So, what will be the Jacobian term here? In order to obtain the density of X from the

density of Z, we calculate the Jacobian of transformation that is Z = B inverse X-mu. So that

is given by determinant of B inverse which is same as determinant of B inverse, which is also

the determinant of sigma to the power -1/2.
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So, the pdf of X is given by that = 1/2 pi to the power p/2 determinant of sigma to the power

1/2 e to the power - 1/2 X-mu prime sigma inverse X-mu. Here, X belongs to Rp, mu belongs

to Rp and sigma is positive definite matrix. Sigma is Rp/p that is p/p positive definite matrix.

When rank of sigma is < p, then the multivariate normal distribution is called a singular

distribution and the density function is defined on a subspace.

Suppose B that is p/k is a matrix of orthogonal column vectors belonging to column space of

sigma and N that is p/p-k be of rank say p-k such that N prime sigma is null matrix. So, let us

consider the transformation, U prime going to X Z prime, where X is B prime U, Z = N prime



U. Then, expectation of Z = N prime mu, dispersion matrix of Z = N prime sigma N that is

becoming null.
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That means Z = N prime mu with probability 1 that is degenerate (()) (44:23) and expectation

of X = B prime mu, dispersion matrix of X = B prime sigma B. So, X follows Nk B prime mu

B prime sigma B. So, we can write actually B prime sigma B can be written as a product of

nonzero Eigen values of sigma. So, B prime sigma B is nonsingular.
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So, X will have density 1/2 pi to the power k/p B prime sigma B to the power 1/2 e to the

power  -1//2  X-B prime  mu  B prime  sigma  B  to  the  power  -1  X–B prime  mu,  so  this

description 1 and 2 that describes the density. If you consider say X–B prime mu, B prime



sigma B Inverse X–B prime mu then that is U-mu B B prime sigma B Inverse B prime U-mu

= U-mu, a generalized inverse of this U-mu for some twice of sigma g inverse.
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So the density is actually 1/2 pi to the power k/2 product of the determinant the Eigen values i

= 1 to k, e to the power -. So, this is actually density of on a subspace. It is not a density on

the full space when the rank of sigma is not full. Now before going to the estimation, let us

consider one or 2 applications of this conditional distribution or linear combinations etc. One

example of a multivariate normal distribution let me write here.
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Let us consider say mu = 4, 3, 2, 1 and I consider sigma as 3, 0, 2, 2, 0, 1, 1, 0, 2, 1, 9, -2, 2,

0, -2, 4. So let us take say X following N4 mu sigma, let us consider some partitioning of this,

say it = X1, X2, X3, X4, which I am actually writing as a X1and X2, okay. That is this is 2



dimensional and this is 2 dimensional here. Let us define say conditional distribution of say

X2 given X1 = say 3, 2.

Now, we have discussed the conditional distribution of one component giving the second

component. So this follow N2 and if I considered the corresponding decomposition of mu as

a mu 1 and mu 2, then this will become mu 2 + sigma 21, so I am partitioning this as sigma

11, sigma 12, sigma 21, sigma 22. So, if I considered this, then this term is sigma 11, this is

sigma 12, this is sigma 21, and this is sigma 22.

So this will become, so let us calculate these terms here. So this one is now 2, 1 + sigma 21 is

this term here, 2. 1, 2, 0, sigma 11 inverse is the inverse of this that is 1/3, 1, 0, 0 and then

you have X1-mu 1, so 3, 2-mu 1, so that will become -1, -1 and here I will get 9, -2, -2, 4,

-sigma 21 that is 2, 1, 2, 0, sigma 11 inverse*sigma 12 that is 2, 2, 1, 0 that is the dispersion

term here.

So, I will get here X2 given X1 = 3, 2 as N2 17/3, 11/3, 20/3, -10/3, -10/3, 8/3. So, I am able

to obtain the conditional distribution of X2 given X1 = a certain number. So, this is quite

interesting here, you can obtain and you can actually look at this, this is 4, 3, 2, 1 and here

you see X2 given some value of X1. So, here you can see that there is a dramatic change

here, this is 17/2 which is bigger than 5 itself, this is around 4.
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And whereas the original means of X2 was only 2, 1. So, if X1 is given 3, 2 then it has

increase  the  means  of  X2  and  similarly,  there  is  substantial  change  in  the  value  of  the



variance-covariance  terms here.  Let  us also define in  the same,  A = say 1,  2  and let  us

consider say B = 1, -2, 2, -1. What is the distribution of say AX1? So, according to AX1 will

have normal with mean.
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So A mu 1 because A is a scalar here, A is a row vector here. So this will become a scalar and

then you will have A sigma 11 A transpose. So, you can calculate this, this value is simply 10

and this is 7. Similarly, suppose I consider BX2, so BX2 is actually = 2 dimensional vector

here that is following normal B mu 2, B sigma 22, B transpose. So, if you can calculate this,

these terms have to be 0, 3, 33, 16, 36, 32.

Let us also consider say covariance between AX1 and BX2, then this will become = A sigma

12 B transpose, so that = 0, 6. So, in this example I have shown you a direct application of

the  distribution  theory  of  the  multivariate  normal  distribution  and  various  things  were

considered here. Let me give one more exercise here. Let us consider say sigma = 4, 1, 2, 1,

9, -3, 2, -3, 25, okay.
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So, here I considered rho as say 1, 1, 1 and here I will consider correlation between, so this is

actually correlation matrix, correlation matrix of X, okay. So that means these term will be

denoting correlation between X1, X2 not covariance, it is correlation terms here. So, consider

find V1/2, where these diagonals are standard deviations and find rho and also show that

V1/2 rho V1/2 = sigma for this particular case.

See  this  is  an  interesting  thing  because  you can  do the  manipulation  with  the  variance-

covariance  matrix  because  of  the  positive  semidefiniteness  of  the  matrix,  this  is  very

important because it has a spectral decomposition, you can have a gram decomposition as V

V transpose etc. So, lots of nice properties are coming here. Let us consider V1/2 here will

become = 2, 3, 5 that is the standard deviation matrix here.

Let us consider V -1/2 so that will be 1/2, 1/3, 1/5, 0, 0, 0, 0, 0, 0 and rho = V to the power

-1/2 sigma V to the power -1/2 that = 1, 1/6, 1/5, 1/6, 1, -1/5, 1/5, -1/5 and 1. I mentioned

about the uniqueness of the sigma 21, 11 inverse term actually. So see there is a problem,

suppose we are calculating the inverses, then sometimes the inverses will not exist or with the

little variation, the inverse may vary too much.

So that means it is an example of an unstable matrix. Let us take one case here at least, let me

give you example of one such problem. Let us take say A = 4, 4.001, 4.001, 4.002 and B =

say 4, 4.001, 4.001, 4.002001, you can see here that in A and B, 3 terms are exactly the same,

the 4th term I have modified only by adding 0.000001 okay only that much difference is

there.
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Let us look at say A inverse, A inverse = -10 to the power 6, 4.002, -4.001, -4.001, 4 and if I

look at B inverse then that = 10 to the power 6/3, 4.002001, -4.001, -4.001, 4. So you can see

that there is a dramatic change in the value here. Actually, determinant of A is turning out to

be -10 to the power -6,  whereas  determinant  of B = 3*10 to the power -6.  So,  there  is

substantial change in the value.

So, we are getting that A inverse is approximately -3B inverse. If you look at A and B, there is

hardly any difference here. In fact, the 3 terms are exactly the same in the 4th term, I am

considering the change after 5 decimal places.  In the 6th decimal place,  there is a minor

change by 0.000001, but if you look at the inverses here, A is almost same as B, but if you

look at the inverse, so then you are getting substantial change.

So, this is an example of unstable system. The reason is that if I look at this that they are

almost  linearly  dependent  here,  see A if  you look at  this  is  dependent,  so this  is  almost

dependent here because there is a small change. In that case, a small change in the value of

one term makes a huge change in the value of B inverse. In the next class, I will be talking

about the estimation of the parameters of multivariate normal distribution.

We will also discuss the noncentral chi square distribution etc because that concept is coming

here and it will be also used in finding out the distributions of the statistics there, so that I will

be taking up in the next lecture.


