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In the last class, I have introduced the problem of classification of the observations. In the

problem of classification of the observations the classical problem is that we are given 2

populations pi1 and pi2 and it is required for us to find out whether a new observation that is

given to us whether it belong to the first population or to the second population. To derive a

classification procedure, we need say training samples from both the populations and we use

that for constructing the proper classification procedures.

In the last lecture, I have introduced the expected loss of observation, expected loss if the

observation is wrongly classified.  Suppose it is belonging to the first population and it is

classified into the second or it is in the second and it is classified into the first. Based on that

we find what is the Bayes procedure and I had also described rR(1) and rR(2) that is the

expected loss of observation if it is from pi1 and it is, if it is from pi2.
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So we say that, a procedure R is at least as good as a procedure R* if rR(1) is <= rR*(1) and

rR(2) is <= rR*(2). That means both the expected losses if the observation is from pi1 and if

the  observation  is  from  pi2  should  be  smaller,  then  the  procedure  R  is  better  than  the



procedure R*. If at least one of the above inequalities is a strict inequality then the rule, the

procedure R is said to be better than R*.

So when we say <= it includes the case of equality also. So when both of them are equal then

R and R* are said to  be equivalent.  If  both of are  equal,  then R and R* are equivalent

classification procedures. So 1 may question that whether there is a procedure, which will be,

better than all the given procedures that means you consider is it the best procedure. 

The answer is that no. So usually in a given classification problem there is no procedure,

which is the best, or at least as good as all the procedures. Now this can be explained like

this. Suppose I make this procedure as the best that means there is no chance of error in

procedure R, then this will become 0 here but at the same time this will become 1 and in that

case this cannot be <= this 1. So that means there is a comparison, so sometimes this will be

better sometimes the other one will be better.

So we say an admissible rule. A classification procedure R is called admissible if there is no

procedure  better  than  R.  A procedure,  which is  not  admissible,  is  called  an inadmissible

procedure. For example, in this case I have mentioned that if there is a strict inequality in this

statement then the procedure R is better than R*. So in that case R* will become inadmissible

procedure. For example, if R is better than R* then R* is an inadmissible procedure. So in a

given problem we are interested to characterize all admissible procedures.
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That means all the procedures which are admissible we should be able to characterize. So in

that  case  we  can  restrict  our  attention  to  only  the  admissible  procedures.  Inadmissible

procedures we can discard. It can be shown under certain conditions that the class of all

admissible procedures is the same as the class of all Bayes procedures. Then we consider a

complete class of procedures.

A class of classification procedures is said to be complete if for any procedure, so let us name

this class as C, if any procedure not in C, we can find a better procedure in C. A class C is

said to be essentially complete if for any procedure not in C, we can find a procedure at least

as good as in, we can find a procedure, which is at least as good as in the class C. So that

means in a given classification problem we would be interested to find out or to characterize

what is the complete class of classification procedures.

So,  another  thing  is  that  there  may  be  some  procedures,  which  are  equivalent,  but  the

procedures themselves may be same except on a set of major 0 or in a set of probability 0

then they will be certainly equivalent, so we can always consider that. Then we consider a

Minimax procedure. So if a procedure R is such that the maximum expected loss that is rR(i)

is minimized for all rules R*.

So basically  what  we are seeing that  for any classification  procedure let  us  consider  the

expected loss. So they will be like rR(1), rR(2), etc. so we look at the maximum of these

values. Now that procedure for which this is actually the minimum that is consider to be the

Minimax procedure. Now we discuss the methods of determining these Bayesian procedures

and the Minimax procedure etc. in a given classification procedure how do we start with.
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So  we  firstly  consider  finding  Bayes  classification  procedures.  So  when  q1  and  q2  are

assumed to be the prior probabilities of the item being in pi1 and pi2, then we consider the

conditional probability of coming from pi1 given an observation x. Given an observation x

what is the conditional probability that it came from pi1: So this will be equal to q1 p1 (x)

divided by q1 p1(x) + q2 p2(x).

So let us look at the denominator denotes an observation. So then, an observation can from

first one and then we write the density or the probability of that first one. Then it could be

from the second one then the probability is q2 and this is the density of the second one. Now

if we find the conditional probability that it actually came from the pi1 then we write in the

numerator.

So this is actually just an application of the Bayes theorem. For the time being, let us consider

the cost functions to be equal. So we can assume that c (1|2) that is misclassification 1 when

it is from 2 and c (2|1) that is misclassification 2 when it is from 1. Let us assume it to be 1.

Now then we consider the expected losses q1 p1(x) dx and R2 that means the observation is

from q1 what we identify as into R2 + q2 p2(x) dx R1.

So this is actually the probability of misclassification. So, our aim is to minimize that. Our

aim is to minimize this. Now if you look at this the conditional probability of coming from

pi1 and similarly the conditional probability of coming from pi2 there it will become q2 p2.

So if you compare that and take the higher one then this can be considered as a reasonable

classification rule.
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Okay, so let us start with an observation x is given and we want to classify this into pi1 or

pi2. We propose the following procedure. If q1 p1(x) / q1 p1(x) + q2 p2(x) is >= q2 p2(x) / q1

p1(x) + q2 p2(x) then assign pi1 else assign pi2. Let me call it (3). So now you can easily see

that  this  is  simply  equivalent  to  because  the  denominator  is  common.  So  therefore,  the

proposed classification rule reduces to. 

That is R1 region is that region of classification into the population pi1 which is q1 p1(x) is

>= q2 p2(x) and R2 region is the reverse of it, q1 p1(x) < q2 p2(x). Here one point to be

mentioned here. I am taking >= here and < here. One can put here > and here <=. So in the

continuous distribution models this will not create any problem. In case of discrete, there may

be a situation where the probability of equality is positive. 

In that case you can further randomize that means you can randomize the classification rule.

That  means  when  equality  is  there  certain  probability  you  assign  to  pi1  and  certain

probability you assign to pi2. So I am just mentioning this point here. If q1 p1(x) = q2 p2(x)

then we can randomize and place x in pi1 or pi2 with some probabilities alpha oR1 – alpha

and of course there is another possibility q1 p1(x) + q2 p2(x) = 0, then that point can be

assigned to any region.
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Now the question comes that we actually define the probability of misclassification as (())

(19:39) and our aim is to actually minimize this. Now we have proposed a rule here. We will

show that this rule is the rule, which we have written here. This rule will actually minimize

this  probability  of  misclassification.  We now show that  the  procedure  (4)  minimizes  the

probability of misclassification (2).

So let us take another procedure say R*. So that is (R1 *, R2 *) that means R1* is the region

where the observation is classified into pi1 and R2 * is the region in which the observation is

classified into R2 in pi2. So for this rule the probability of misclassification is q1 p1(x) dx R2

* + q2 p2(x) dx R1 * which we can write as [q1 p1(x) – q2 p2(x)] dx R2 * + q2 p2(x) dx.

Now if you look at the second one this term has no R1 R2 coming here that means whatever

be the procedure this term will be the same. 

That means we have to look at the first term only. The second term does not depend upon a

specific classification procedure. Now the first term if you look at this will be minimized if

R2 * includes all the points x for which q1 p1(x) < q2 p2(x) and excludes those points for

which q1 p1(x) > q2 p2(x).
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Now if you consider the probability of {p1(x) / p2(x) = q2 / q1 | pi i} = 0, for i = 1, 2 then the

procedure (4).  If  you look at  the procedure (4),  in the procedure (4), we are considering

exactly those regions where q1 p 1 >q2 p2 and we are excluding those which are having q1 p

1 < q2 p2. So whatever statement I gave here the first term is minimized of R2 * includes all

the points x in which this is less and excludes those points for which it is greater, then the

procedure (4) is exactly satisfying that condition. 

Therefore, this procedure (4) minimizes (2). It is also unique except on the sets of probability

0. Hence, it is a Bayes procedure. So we can easily that we have been able to determine if the

prior probabilities of the population pi1 and pi2 are given as q1 and q2 then the procedure

that is given here, this actually a Bayes procedure. Of course, here we assumed the costs to be

equal and that is why we put cancel on both the places. If the cost factor is given, then that

will also be included. Let me just give an expression for that.

For the general set  up of cost function that  is when we have c (1 |  2) and c (2 |  1) not

identical,  the  probability  of  misclassification  we  will  write  it  as  (PMC)  probability  of

misclassification. That will become PMC R = c (2 | 1) PR (2 | 1) q1 + c(1 | 2) PR (1 | 2) q2

which is actually = q1 c(2 | 1) integral p1(x) dx R2 + q2 c(1 | 2) integral p2(x) dx R1. So in

place of this procedure, now we will put cost factor also here and then the procedure that we

will proposing can be written like this. 
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Then the procedure we consider R1: q1 c (2 | 1) p1(x) >= q2 c (1 | 2) p2(x) and R2: q1 c (2 |

1) p1(x) < q2 c (1 | 2) p2(x). When we write this one, assumption has to be made because we

consider cost function.  See in case of some gains this could be negative also. So we are

assuming here that  the cost  function is  non-negative.  Otherwise,  the inequalities  will  get

modified. So we have the following theorem.

If q1 and q2 are prior probabilities of observations, of populations pi1 and pi2, that means

observation  is  coming  from  whether  pi1  or  pi2  if  q1  and  q2  are  the  initial  assigned

probabilities and if costs of misclassification are c(2 | 1) and c(1 | 2) respectively, then the

expected probability of misclassification is minimized by the rule (6). In fact, we can actually

write this rule as, R1 you can write in terms of ratios p 1(x) / p2(x) is >= c (1 | 2) q2 / c (2 | 1)

q1 and R2 is reverse of it. That is p1(x) / p2(x) < c (1 | 2) q2 / c (2 | 1) q1.
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Further, if the probability of the equality p1(x) / p2(x) = q2 c (1 | 2) / q1 c (2 | 1) under both

the populations if this is 0, then this rule is unique except on sets of probability 0. So this rule

(7) is a Bayes procedure. So you can see we have actually solved a problem here. Now many

times it  happens in the classification situation usually  the size of the populations  will  be

known.

For example, if we want to classify say land, water we want to classify as a very good student

or a mediocre student. So we may know the proportion of the size of the populations. If we

know that, then basically we can assign q1 and q2 and in that case the best procedures you

need  is  the  Bayesian  procedure  and we are  actually  aware  because  it  is  minimizing  the

expected probability of the Bayes classification.

So you are actually having the best procedure. So this is actually you can see the first case

and here we are assuming the probability distributions are completely known. That means

p1(x)  and  p2(x)  is  known  to  us  and  in  that  cases  we  are  actually  able  to  get  the  best

procedures. Now let us consider another thing. Now it could be that initial probabilities are

not known. In that case, we can consider the general procedures.

So another thing could be that we may assign various probabilities that in place of q1 q2

suppose it is q1 * q2 *. That means it is not necessary that we have to strictly fix the prior

probabilities  and in  that  case  the  Bayes  rule  will  change.  Now, the  question  comes  that

whether if your initial assignment is not correct and you get another rule then is it alright or

not? 



The answer is that even then we are reasonably all right because all the Bayes rules will be

admissible. This is proved in the following theorem. If the probability of p2(x) = 0 given pi1

=0 and probability of p1(x) = 0 given pi2 = 0 then every Bayes procedure is admissible. Let R

= (R1, R2) be a Bayes procedure for a given q1, q2. Let R* = (R1 *, R2 *) be any other

procedure.

Now we are assuming that R is a Bayes procedure. So using that we will have since R is a

Bayes procedure the probability of misclassification under R will be smaller than PMC under

R*. So you can consider say here q1 PR (2 | 1) + q2 PR (1 | 2) that is <= q1 PR* (2 | 1) + q2

PR* (1 | 2). This we can further simplify; we can write as q1(PR (2 | 1) – PR* (2 | 1)) is <

q2(PR* (1 | 2) – PR (1 | 2)).
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Now this q1 and q2 see these are the assigned probabilities so they are between 0 and 1. So

we can make use of that. Now q1 is between 0 and 1. So if you are having this PR* (1 | 2) <

PR (1 | 2). See what we want to prove that this R* cannot have both the components less. So

suppose this is less, then this will become negative. If this is becoming negative, then what

will happen that p R (2|1) will become < PR* (2|1).

That means if PR* (1|2) is less, then PR* (2|1) will become more. On the other hand, if you

consider PR* (2|1) is less than this then this will become positive. If this is positive, then this

is positive and then you will have PR (1|2) less than this. That means both the components



corresponding  to  R*  of  the  probabilities  of  misclassification  cannot  be  smaller  than  the

corresponding components of probabilities of misclassification for the procedure R.

So let me just write it formally. Now if PR* (1 | 2) < PR (1 | 2) then the right hand side of (9)

is negative and hence PR* (2 | 1) will become > PR (2 | 1). Similarly, if PR* (2 | 1) < PR* (2 |

1) then the left hand side of (9) is positive and hence PR* (1 | 2) will become > PR (1 | 2). So

R* cannot be better than R. It cannot be better than R and so this proves that R is admissible.

Now you can consider the extreme case for example q1 = 0. If you take q1 = 0 then what it

will give? That (9) will give you simply that PR* (1 | 2) is > PR (1 | 2). Now for a Bayes

procedure what is happening? R1 includes only points for which p2(x) = 0. So PR (1 | 2) this

will become 0 and if R* is to be better than R, then the only possibility is that PR* (1 | 2) = 0.

So if probability of p2(x) = 0 given pi1 = 0 then PR (2 | 1) = P (p2(x) > 0 | pi1) that is equal to

1. On the other hand, if PR* (1 | 2) = 0 then R1 * contains only points for which p2(x) = 0. So

PR* (2 | 1) = P(R2 *| pi1) = P (p2(x) > 0) pi1) that is = 1.So we have proved that R* is not

better  than  R.  So here  we took  an  arbitrary  procedure  R* and we are  showing that  the

procedure R* cannot be better than R.
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Now the reverse of this is also true. Under certain condition, every admissible procedure will

be a Bayes procedure. We prove the following theorem. If probability of p1(x) / p2(x) = k

under pi i = 0, for i = 1, 2 for any k between 0 to infinity then every admissible procedure is a

Bayes procedure. I mentioned that characterization of the class of the admissible procedures



and  I  mentioned  that  it  could  be  shown under  certain  condition  that  the  class  of  Bayes

procedure is same as that of the class of admissible procedures. 

So the previous theorem and this theorem taken together they prove this statement. Let me

give  a  proof  of  this.  See  if  (10)  holds  then  for  any q1,  the  Bayes  procedure  is  unique.

Moreover, the cdf of p1(x) / p2(x) for pi1 and pi2, this is continuous. Let R be an admissible

procedure. Then there exists a k such that PR (2 | 1) = the probability of p1(x) / p2(x) is <= k

under pi1 = PR* (2 | 1) where R* is the Bayes procedure corresponding to q2 / q1 = k. That is

actually you are saying that q1 = 1 / 1 + k and q2 = k / 1 + k.
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Now, since R is admissible, therefore we must have PR (1 | 2) to be <= PR* (1 | 2). Since any

Bayes procedure is admissible, we will have the reverse that means PR (1 | 2) has to be > PR*

(1 | 2). So basically, it means that they are same. So what we have proved? We started with a

procedure R, which is an admissible procedure, and R* is the Bayes procedure.

So what we did that we consider the Bayes procedure with respect to that for that this is the

probability because p1(x) <=. So there is a k, which is appearing in the form of the Bayes

procedure if you remember. We wrote it at here. The form of the Bayes procedure had this

term here. Let me give it again. You can look at this q1 p1(x) >= q2 p2(x). So you are having

p 1 / p2 >= q2 / q1 and p 1 / p2 < q2 / q1.

So if you combine these 2 then this is becoming a Bayes procedure. Thus, R is a Bayes

procedure.  By  uniqueness  of  the  Bayes  procedure  except  on  sets  of  probability  0,  we



conclude that R and R* are same. So we have proved very significant result. That is all the

admissible procedures are basically the class Bayes procedures.

The  class  of  Bayes  procedures  is  the  class  of  admissible  procedures.  So  in  a  given

classification  problem we  can  restrict  attention  to  the  class  of  Bayes  procedures.  If  this

statement number (10) holds, then the class of Bayes procedures is minimal complete. So this

is a very powerful result because it allows you to restrict attention essentially to only Bayes

procedures. Now let us also consider some discussion on the minimaxity.
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Remember  that  the  minimaxity  criterion  is  based  on  a  different  philosophy.  We  are

considering the worst possibility that means worst-case scenario that means the probability of

misclassification is the worst and then among the worst  we are choosing the best.  In the

Bayesian  procedure,  we  are  considering  only  the  average  loss  or  average  probability  of

classification where as in the Minimax procedure we are considering the individual.

But then we are looking at the worst that can happen and then we are choosing that procedure

for which is actually the best. So let R be the Bayes procedure with respect to assignment of

probabilities q1 and q2. Let us denote p q1 (i | j) = p R (i | j). That means when q1, q2 is there

then the procedure (4) I have written, then that procedure is considered the Bayes procedure

and under that probability of misclassification denoting by q1 just to denote that. 

So with q1 changing like q1 is half or q1 = 1/4 etc., then this is a continuous function of q1.

Actually you can say that p q1 (2 | 1) this will vary from 1 to 0 as q1 varies from 0 to 1 and p



q1 (1 | 2) varies from 0 to 1. So you can see that they are continuous functions and they are

varying between 0 to 1 as q1 varies from 0 to 1.

So certainly, they will cross at some point. If I am considering the graph of p q1 (2 | 1) and

this is the graph of say p q1 (1 | 2) between 0 and 1 then they will cross at each other. So they

cross each other at some point say q1 *. That is p q1* (2 | 1) = p q1 * (1 | 2). This is the

Minimax  classification  procedure  that  is  the  Bayes  procedure  obtained  when  the  prior

probabilities are q1 and q2, q1 * and q2 * is the Minimax procedure.
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To show that this is Minimax, let R* be any other procedure for which maximum of {PR* (2|

1), PR* (1|2)} is <= p q1 * (2|1) = p q1 * (1|2). Now if you say this that maximum of this is

<= this then both the components have to be <= this. But this would imply for R* procedure

the expected probability will be less than the expected probability of misclassification when

the rule is assigned by q1 * that is the Bayes procedure. 

So this will contradict that this is the Bayes procedure. Therefore, this cannot be true. This

contradicts  the  fact  that  every  Bayes  procedure  is  admissible.  So friends  today we have

considered the basic problem of classification. I have given a very (()) (54:54) consideration

of this problem. We considered the costs of misclassification in terms of the probabilities of

misclassification p2 and p 1 2. 

That means p 1 2 is the probability of classifying 1 when actually the observation is coming

from p 1 and similarly p2 1 is the probability of misclassification into the population 2 when



it is actually coming from 1. Now on the basis of this we have considered 2 criteria. 1 is the

Bayesian criteria if somehow, we are convinced about the proportions of the observations

from the 2 populations say q1 and q2 then based on that we can actually find out the rule,

which will minimize the expected probability of misclassification.

So this rule is called the Bayes rule and exact form is obtained here in terms of q1 p1(x) > q2

p2(x) and vice versa that is less as the regions of classification into pi1 and pi2 respectively. 1

can add an  additional  cost  factor  also  in  terms  of  c  (1|2)  and c  (2|1)  and then  also  the

Bayesian procedure is obtained. We also looked at the desirability of the Bayesian rules in

terms of the complete class.

For example, we could prove that for every Bayes rule is admissible and every admissible

rule is Bayes under certain condition and therefore the class of admissible rule is same as the

class of Bayes procedures and therefore the class of Bayes rule is the minimal complete class.

So in practice this helps us because if we consider any prior assignment of the probabilities

we are doing all right. That means reasonably good rules are available to us.

In fact, whatever rule we propose we will not be able to find the better rule than that, of

course  we  can  find  the  other  rules.  Second  thing  is  that  in  the  same  class  we  actually

determine a Minimax rule also because we can look at, we can vary continuously this q1 and

c where probabilities of (2 | 1) and p q1 * (1 | 2) they match. So the point where they match

the Bayes- rule at that point will actually give you the Minimax procedure.

So in classical (()) (57:18) formulation we have the solution of this problem. Now in the

following classes I will look at the classification procedures for the normal populations rather

multivariate normal populations. So the original formulation is by Abraham Wald, 1940s and

then  we look  at  the  procedures,  which  are  discussed  in  by  Fisher  that  means  when the

parameters of populations are unknown. So he estimates that so we consider the classical

fisher discrimination.

We consider the (()) (57:54) distance and then we consider the Anderson’s classifications, etc.

So these are the things that I will be following up in the next classes. That means we will next

consider  classification  of  observations  into  multivariate  normal  populations.  They  were

initially  proposed  and  studied  by  Fisher,  Wald,  Anderson,  etc.  So  we  will  discuss  the



properties of this procedures and how the procedures are actually obtained. So this I will be

covering in the next lecture.


