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In the last lecture, I had started the continuous distributions especially we did exponential

distribution and Erlang or Gamma distribution and both of the distribution I showed that they

arise as distribution for the waiting time of the incidences in the Poisson process. However

today I will introduce some more continuous distribution which may not be related to the

Poisson process.

The first one is one of the simplest distribution we call it uniform distribution. Now we have

seen the uniform distribution in the case of discrete variable also where we allocate equal

probability  for  each  outcomes.  Now  in  the  case  of  continuous  distribution  if  you  have

constant density over the region over a finite interval then it is called a continuous uniform

distribution.
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So  we  can  define  like  this  a  continuous  random  variable  X  is  said  to  have  a  uniform

distribution on the interval say a to b. Now here one may take open interval or closed interval

it will not make any difference if its probability density function is given by fx=1/b-a for

a<or= equal to x <or = b and it is 0 elsewhere. So if you make a plot of this you can easily see

how it will look like.



Suppose I consider a and b here so 1/b-a is this one. So that is why if you plot it looks like a

rectangle so that is why there is another name to this distribution it is also called Rectangular

Distribution. This type of distribution is applicable in various situations for example you may

consider waiting at a traffic crossing when you go on a busy road. So signal waiting time may

up to say 3 minutes so you may have to wait say 0 to 3 minutes.

For example, the time spent at telephone booth by the customer and many other applications

of this nature can be considered as applications of uniform distribution. Now as you can see

since the density is constant the mean or the first moment will be simply the mid value of the

interval. One can easily calculate higher order moment also in fact moments of any order can

be easily calculated.

I can consider mu k prime that is= expectation of x to the power k that is=integral x to the

power  k/b-A dx  from a  to  b.  So  naturally  this  is=  b  to  the  power  k+1-a  to  the  power

k+1/k+1*b-A. In particular, we can consider mu 2 prime and also the variance that is mu 2 in

this case it will turn out to b-a whole square/12 that means the standard deviation will be= b-

a/ 2 root 3.
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One can look at the moment generating function expectation of e to the power tx so that will

be=e to the power bt-e to the power at/t*b-a of course this is for t not equal to 0. If t=0 then

naturally it is=1. As I mentioned uniform distribution has uses when the density is assumed to

be constant. Let us look at some other useful distribution. Let me introduce one concept here



we have considered exponential distribution or gamma distribution.

So for example what is exponential distribution? Exponential distribution we have defined as

the distribution of the waiting time for the first occurrence in Poisson process. So it  can

model  various  kind  of  phenomena  for  example  life  time  of  the  components  in  a

manufacturing process, life of an electronic system and so on. Now when we consider the life

time interpretation of the exponential distribution then one of the important concept is that of

a rate or you can say rate of occurrence.

Now in the context of lifetime that rate of occurrence of the incident can be called to be a for

example if the system fails so you can call it failure so that means we are interested in failure

rate.  So  we  define  formally  what  is  a  failure  rate  we  connect  it  with  the  exponential

distribution  and in  the  light  of  exponential  distribution  then  we like  to  see what  further

generalizations of this can be made.
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So we consider let us consider a quantity probability of say system is working till time t. So I

am considering let X denote the life of a component or system etcetera. Now if the system is

working till time t what is the probability that it fails in some time immediately after t that

means from t to t+ h where h is a small quantity and if I want to look at the rate then I divide

it by h and then I take limit h tends to 0.

Now you can easily give an interpretation to this. The system is working till time t and we

assume that it fails immediately after time t and then we divide by the length of the interval in



which it fails  and then take the limit  then this  can be called instantaneous failure rate of

system at time t. So this is a useful quantity let us evaluate it. So this is= h tending to 0 limit

1/h.

Now if you look at this one this is conditional probability, but in the numerator you have a

event which is subset of the event in the conditioning so this will become probability of t<x <

or= t +h/ probability of x>t. So this is= limit h tending to 0 and now this is nothing but f of t+

h- f of t/h and this quantity is 1-Fx of t. So x is continuous here okay then we assume capital

F denotes the cumulative distribution function of x and let us take small Fx to be pdf of x

then this limit as h extends to 0.

This will become the density function of x so this is=fxt/1-Fxt. So this we call failure rate we

have some name like Ht this  is  also called  hazard rate of the system. This 1-Fxt that  is

probability  of x>t this  is called reliability of the system at time t that means what is the

probability  of  system surviving till  time t.  Now in the light  of  this  let  us firstly  look at

exponential distribution and then we will look at generalizations.
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For  exponential  distribution  let  us  consider  one  standard  model  we  can  consider  say

fxt=lambda e to the power –lambda t for t positive. So here capital Fxt is nothing but 1-e to

the power-lambda t that is Rxt= e to the power-lambda t. So this Ht that will be= lambda e to

the power –lambda t/ e to the power –lambda t that is=to lambda. Now you can easily note

here that this is free from time t.



That means hazard rate for the system which follows exponential life time are constant. Now

this is a very unique property which is free from t that is the failure rate of systems with

exponential life distributions is a constant. One more thing that we can see here this particular

relationship you can actually consider inverse relationship that means given the distribution

we can evaluate the failure rate.

Given the failure rate also we can calculate the distribution. So let me call this relationship *

from relation * we can write see Hxt that is= we can consider –d/dt log of 1-Fxt. So this

implies I can consider log of 1-Fxt= integral of Hxt dt. So this means (()) (12:17) constant

you will get Fxt that is= and you will get a –sign e to the power –integral Hxt dt*constant.

For the exponential distribution you can see Hxt is lambda so you get e to the power-lambda t

and this k can be determined from the initial condition.

For example, Fx0=0. So this can be calculated. Now you think of a situation where the failure

rate is not constant that means it may depend upon t. Now the simplest situation you may

think of for example it could be lambda t that means it is linear failure rate or you may think

of parabolic failure rate like lambda t square etcetera. Now given any such thing you can

evaluate the function.
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Let us take 1 example here let us say Hxt=lambda t. In that case what will be 1-Fxt that is= e

to  the  power-lambda  t  square/2.  And  if  you  consider  say  differentiation  so  the  density

function will give you- and this – will come on this side. So you will e to the power –lambda

t square/2 twice lambda t/2 that is= that means the density function is= lambda t e to the



power –lambda t square/2.

Now this gives you a more for example if I had taken lambda to the power K here then I

would be getting lambda t to the power K/k e to the power k+1/k+1 and here I would have

got again the derivative of t to the power k+1 that is lambda t to the power k here. So that

gives a more general class of density called Weibull distributions. This give rise to general

class of distribution called Weibull distributions.

That means we are considering fx=something like alpha beta x to the beta-1 e to the power –

alpha x to the power beta for x>0 and of course alpha and beta positive. So if we have this

density you can see that capital F or 1-Fx will be=e to the power –alpha x to the power beta.

That means the hazard rate will become=alpha beta t to the power beta-1 which is nothing,

but a power of t.

So when you have power of t you get a general Weibull distribution. Now here you can have

2 types of things. For example, if I consider beta>1 then what does this mean if beta >1 that

means  if  time  increases  the  failure  rate  increases.  So  that  describes  various  for  example

systems which are used in industry. For example, any practical kind of system the failure rate

will increase as the time increases be at television set or be any manufacturing system or be

in any machine.

But we can also model here certain different kind of system for example I may consider beta

<1 if I take beta<1 then this t will go in the denominator that means as the time increases the

rate of failure decreases. Now this kind of things for example are applicable you consider any

organic life forms. So in a organic life form for example a small kid after the birth the failure

rate or you can say the death rate is very high mortality rate is very high.

But as the time progresses then his rate of death decreases. So for example from 0 to 5 years

it is quite high then from 5 years to say 50 years it is much less. So that means you can model

the systems where the initial failure rate maybe very high. That means as the time increases

the failure rate decreases. So this gives you a flexibility. Now in the light of this reliability

function.

And the failure rate we also consider systems in which multiple components are there.
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So we can consider say systems which we consider systems in a series so this is called a

series  system and you may have systems in parallel.  So for example  the system will  be

working if either of this system 1, 2, n is working. Here the system will work if all of the

system 1 to n are working. So this is a series system this is a parallel system. So these are the

system which are used quite often in engineering design.

Let  us look at  the reliability  of such systems. Reliability  of series systems. Let  a system

consists of n components with say system lives defined by random variable say x1, x2, Xn

which are connected in a series. So let us consider say let us define x to be the system life.
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Then if we define the system reliability that is let us call it Rxt that is probability of x>t. So if



this entire system is functioning at time t that means each of the components x1, x2, Xn is

functioning at time t. So this equivalent to saying probability of x1>t, x2>t, Xn>t. So this will

define the system reliability. So if  we know the joint distribution x1,  x2,  Xn this  can be

evaluated.

Now in special case we can consider that if x1, x2, Xn are independent then this Rxt can be

written as product of this probabilities product of Xi>t I=1 to n. That means it is product of

the reliabilities of the individual system. So if you have a system which is connected in a

series which has components connected in a series and the components are independent then

system reliability is nothing, but the product of individual component reliabilities.

Now the physical interpretation you can think of for example let us take constant component

reliability say p at a time t. Now suppose you have n components then the system reliability

at time t for the entire system will become p to the power n. So naturally suppose I consider

p=1/2 and I take n=3 then Pq that is a system reliability is 1/8 which is much less than ½.

That  means  if  you  add  the  systems  in  a  series  then  the  entire  system  reliability  will

continuously decrease. The reason is that if you have more systems then any of them can

contribute to the failure of the system and therefore the entire system reliability will become

weak or you can say it will become less. On the other hand, let us consider reliability of a

parallel system.

So  let  a  system consists  of  n  components  with  system  lives  say  x1,  x2,  Xn  connected

parallely that means for example  if  you have a circuit  from A to B then the circuit  will

function as long as any of the systems 1 to 3 functions. So let us again x denotes the system

life. Then the system reliability will be this is= probability x1>t or x2>t or Xn>t. Now we can

consider it in a different way.

We can  consider  1-  if  it  is  the  at  least  one  of  them  is  working  then  if  I  consider  the

complimentary event. Complimentary event will be that all of them will be failing. So it will

become probability of x1<or=t, x2 < or=t, Xn <or=t.
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Now again if I consider the special case that is if x1, x2, Xn are independent then Rxt can be

written as 1-product of probability Xi< or=t which is nothing but 1- now this will become Rit

product I=1 to n. Once again let us look at through a practical example. Suppose I assume

components  to  have  identical  reliabilities  at  time  t  suppose  p=1/2.  Suppose  I  have  2

components if I have 2 components then this will become 1-1/2 square that is=3/4 that means

the system reliability increases if we connect the components in parallel.

The system reliability decreases for the series the components which are attached in a series,

but if you put them in the parallel then it increases. So an important engineering design is that

in which we create or you can say increase the system reliability by adding extra system as a

backup in series. Generally, they call it like waiting time that as soon as something fails you

put something more that means other system starts functioning.

So this concept of reliability failure rate, hazard rate has extremely useful applications in

engineering studies because generally we are dealing with the system life. So these are the

important quantities to be considered. Based on Weibull  distribution there are some other

distribution also which are used. As you can see here that we have introduced in the exponent

a power here that is x to the power beta.

There are other distributions were in place of polynomial power we can consider exponential

power also. Now naturally you can see that they will go to 0 very rapidly so they are also

called extreme value distribution. So one can look at various extreme value distributions also.

In this particular course we are just mentioning this point here.
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Now we move to one of the most widely used distributions in a statistical theory it is called

Normal  distribution.  Firstly,  let  me  introduce  the  distribution  and  then  we  look  at  its

importance and then why it is actually considered to be most popular and why the name

normal is coming. So a continuous random variable X is said to have a normal distribution

with parameters mu and sigma square we write actually x follows normal mu sigma square.

If its pdf is given by 1/sigma root 2 pi e to the power – x-mu square/2 sigma square where the

range of the variable  is  – infinity  to infinity. The parameter  mu is  also from -infinity  to

infinity and the parameter sigma is positive. If we plot the curve it is something like this. As

you can see this is symmetric about the value mu. Well let me demonstrate how to evaluate

the integral related to this and then we can.

So let us consider the evaluations first. So for the evaluation I consider a general term for

example mu k prime. So mu k prime is expectation of x to the power k that is= integral rather

I will consider firstly.
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Let me just look the evaluation of the density form –infinity to infinity. Actually if it is a

proper density then this should integrate to 1 so let us look at this one first 1/sigma root 2 pi.

Now you consider a transformation z=x-mu/sigma. As you can see from –infinity to infinity

this is one to one transformation. So this integral will then become =1/root 2 pi e to the power

–z square/2 d z.

Now what we do we observe that this is a convergent integral  that you can easily check

because it will be rapidly diverging to 0 on both the sides.
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So let us put then this will become=twice 0 to infinity e to the power –z square/2. Those who

have  done  the  theory  of  gamma  function  you  already  know  its  value,  but  I  will  just

demonstrate the evaluation here. So z is actually=root 2 t. So we can also write it as this is to



demonstrate to transform it into a gamma function. So this is becoming e to the power –t by

root 2 t dt that is=simply gamma. So 1/root pi gamma 1/2 which is root pi so it is=1.

Now if we use this we can evaluate for example what is expectation of x-mu if I consider

expectation of x-mu to the power k for example. As you can see this integral evaluation is

much  better  compared  to  expectation  of  x  to  the  power  k  because  I  have  made  the

transformation x-mu/sigma=z. So that will simplify this term whereas in this one it will not

get simplified.

So if I consider this term here 1/sigma root 2 pi e to the power-x-mu square/2 sigma square

dx and here you have x-mu to the power k. So if I make this transformation x-mu/sigma=z

then this becomes = –infinity to infinity 1/root 2 pi sigma to the power k z to the power k e to

the power –z square/2 dz. So obviously this vanishes for k odd. Now let us consider k=1. This

means expectation of x-mu=0 which means expectation of x=mu.

So the term mu here denotes the mean of normal distribution which is also you can look at it

here from the shape of the distribution this is also the median and it is also the mode of this

distribution also it is median and mode. Now let us consider say for example k=2. If I take

k=2. So now this quantity because mu is the mean then this becomes actually the central

moment here.

This expectation of x-mu to the k this is actually kth central moment because I approved here

mu is the mean. So for k=2 mu 2 will denote the variance of x Now let us look at the value

here it is-=1/root 2 pi-infinity to infinity sigma square z square e to the power –z square/2 dz.

Now this one is an even function.
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And therefore this is=2/root 2 pi 0 to infinity sigma square z square e to the power-z square/2

dz. We again look at the transformation that we considered here that is z square/2=t. So if we

consider this transformation then this value is simply=2 sigma square/root 2 pi 0 to infinity 2

t e to the power –t/root 2 t dt. So easily you can see this term is giving you t to the power 1/2

that is gamma 3/2.

So gamma 3/2 is 1/2 gamma 1/2 that is 1/2 root pi and this 2 and this 2 and this 2 cancels so

1/2 and 2 cancels so you get simply sigma square. So we have shown that this parameter

sigma square of the normal distribution is actually denoting the variance. So now when I

write that x follows normal mu sigma square means the mean of the normal distribution is mu

and the variance is sigma square.

Now as I have mentioned here the mu can be any real number and sigma can be any positive

number. One of the important special case will be when mu=0 and sigma =1 that is called a

standard normal distribution.
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When mu=0 sigma square=1 it  is  called  a  standard  normal  distribution.  The  probability

density function of standard normal distribution that is 1/root 2 pi. Since sigma is 1 e to the

power –x square/2 for x between –infinity to infinity. In the statistical text special notation

small  phi  is  used  for  this.  The  cumulative  distribution  function  of  standard  normal

distribution is denoted by capital phi that is –infinity to x small phi t dt.

Now  this  function  has  some  special  property  also.  As  you  can  see  since  the  normal

distribution  is  symmetric  around  its  mean  when  I  have  a  standard  normal  this  will  be

symmetric around 0. That means small phi of-t=small phi of t. Now if you utilize this here

you will get capital phi of t-=1-capital phi of-t and in particular capital phi of 0 will be=half

that means 0 is the median which is true here.

Now  there  is  another  important  point  because  of  which  standard  normal  distribution  is

considered.  Given any  normal  distribution  you  can  always  shift  it  to  a  standard  normal

distribution for that I will prove one result here.
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So firstly let us look at say consider the moment generating function of normal distribution.

So expectation of e to the power tx that is Mxt. So that is=integral from – infinity to infinity e

to the power tx 1/sigma root 2 pi e to the power –x-mu square/2 sigma square dx. Now as

before we consider the transformation that is x-mu/sigma=z. Now a consequence of this is

that x=mu +sigma z.

So if we consider this then I get here-infinity to infinity 1/root 2 pi e to the power t mu+

sigma z e to the power –z square/2 dz. So this I write as 1/root 2 pi and this e to the power mu

t can be written outside and e to the power-1/2 z square-twice sigma tz.  Now I add and

subtract sigma square t square here. So if I subtract here and I take out it outside it  will

become.

So this I can express as e to the power mu t+1/2 sigma square t square-infinity to infinity

1/root 2 pi e to the power-1/2 z-sigma t whole square dz. If we look at the integrant this is

nothing, but the probability density function of a normal random variable with mean sigma t

and variance 1 that means in place of mu if I put sigma t and in place of sigma I put 1 then I

get this.

Therefore, the integral of this should be simply =1. So this quantity becomes the mgf of a

normal distribution with mean mu and variance sigma square.
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Now using this we can prove the linearity property of a normal distribution. That means if x

has a normal mu sigma square distribution. Let us define y=say a X+ b where a is not 0 then

let us calculate the moment generating function of y that is expectation of e to the power ty

that is= expectation of e to the power t ax+b so that is= e to the power bt moment generating

function of x at the point at.

Now moment generating function of x is calculated as e to the power mu t+1/2 sigma square t

square. So we substitute it here this gives us e to the power bt e to the power mu at+1/2 sigma

square a square t square that is= e to the power t a mu+b+1/2 sigma square t square. So this is

moment generating function of a normal distribution with mean a mu +b and variance this is

a square sigma square so a square sigma square.

So what we have proved by the uniqueness property of mgf we conclude that Y follows

normal a mu+ b and a square sigma square. So this is if you look at any random variable x

with certain mean and variance then we know that it is mean is linear and variance will be

square, but if we consider the distribution, the distribution itself may change. However, for

the normal distribution any linear function is also having the normal distribution.

Now if I take the special case if I take x-mu/sigma then that will follow normal 0, 1. So from

any normal random variable I can transfer it to normal 0, 1 this is called standardized variable

or normalized value that means you subtract the mean and divide by the standard deviation

then this will have normal 0,1 distributions. That means from any normal I can always shift to

standard normal.



Now  this  property  is  useful  to  evaluate  the  probabilities  related  to  a  general  normal

distribution. So if I consider say cumulative distribution function of x that is probability of

x<or=x. As you can see this is nothing, but the integral from –infinity 2 x of the density

function here 1/sigma root 2 pi e to the power –x-mu square/2 sigma square which will lead

to an incomplete gamma function.

So for every different mu and sigma it will be difficult to evaluate. However, if we use this

linearity property we can consider this is=probability of Z < or= x-mu/sigma that is nothing,

but phi of x-mu/sigma. The tables of capital phi are available in almost all the statistical text

these tables are there. I will just show you the cdf of the standard normal distribution. So that

means you have the normal curve and standard normal curve.

So what is the probability up to a point z that is cdf. So for different values of z this values

are the probabilities are tabulated for example what is the probability up to 0 so this is=1/2.

What is the probability up to say +1? it is 0.8413. Now if we look at this we also come across

some very interesting phenomena about normal distribution which I will show you now.

(Refer Slide Time: 46:18)

Let us consider some special points. We look at phi of 1 that is=0.8413. I also given you the

relationship that phi of x=1-phi of –x. So if I consider what is the probability of -1 < or=z <

or =1 that is= phi of 1-phi of-1. So if I use this property I get twice phi of 1-1. So that will

give us 0.6826 that is I have just taken twice of this that is=1.6826 so then I subtract 1 so I get

0.6826.



Now if you write here z=x-mu/sigma then it is giving you mu-sigma < or=x < or=mu+ sigma

is= 0.6826. Now this is interesting let me again draw the normal curve this is mu. So let us

consider  mu-sigma  to  mu+  sigma.  So  what  we  are  saying  that  more  than  68%  of  the

probability  is  concentrated  in  the  zone  mu-sigma  2  mu+  sigma  that  is  more  than  68%

probability is concentrated between mu-sigma to mu+ sigma.

Likewise let us consider say phi of 2 from the tables of standard and normal distribution you

can see phi of 0.2 is 0.9772 that is= 0.9772. Once again if I consider probability of mu-2

sigma to mu +2 sigma then that will give me that means I have just multiplied this by twice

and subtracted 1 like here. So what we are concluding that more than 95% of probability is

between mu-2 sigma to mu+2 sigma. Finally let us write say phi 3.

(Refer Slide Time: 49:40)

If you see from the tables of the normal distribution it is=0. 9987. So if I consider probability

of mu-3 sigma < or=x < or=mu+3 sigma. Then I get point that is more than 99% probability

is between 3 sigma limits that is mu-3 sigma to mu+3 sigma. So in the industrial quality that

means when we are looking at the quality of the items then we try to see that our most of the

material is between mu-3 sigma to mu+ 3 sigma.

So for very long time in the industry this 3 sigma limits are found to be very useful. So they

say that process is under control if it is within the 3 sigma limit and of course nowadays there

is  further  generalization  we are considering  6 sigma in place  of 3  sigma because if  you

consider 6 sigma then the probability of inclusion becomes it will be actually 0.999998. So



that means probability having outside will be 1 in a million kind of thing.

So this 3 sigma limits are used in the industry. To conclude about this normal distribution

actually I will be telling more in the following lecture.
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Let us just look at here the measures of skewness and kurtosis for the normal distribution.

You can easily check from the calculation because we have already calculated the general mu

k. So mu 3 is 0. So measure of skewness will be 0. If I look at the measure of kurtosis for that

I need mu 4 it can be checked it is=3 sigma to the power 4. So the measure of kurtosis that is

mu 4/mu2 square -3 that is= 3 sigma to the power 4/sigma to the power 4-3 that is=0.

So when I was mentioning the peakedness or the kurtosis of the distribution I mentioned that

there is a normal peak and higher peak that we called leptokurtic and flat peak we called it

Platykurtic. So here we can see that the normal peak is actually the peak of the normal curve

or the normal distribution.  Now more about that why we are actually  calling it  a normal

distribution I will be covering in the next lecture.

What we have observed here is that the normal distribution satisfies a linearity property it is

also having symmetry and the probability  is connected to any normal distribution can be

calculated using standard normal probabilities which are actually available in the form of

tables. We will in the following lecture show that normal distribution arises naturally as the

limiting distribution of various distributions.



So the results are known as a central limit theorem. So in the next lecture I will be covering

that. 


