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Sampling Distributions

In the previous lecture I have introduced normal distribution. Now I did not actually give you

how that normal distribution arises. So first of all let us look at the historical development of

the normal distribution and then why it has come to be placed as one of the most important

distribution in the theory of statistics. Historically if we look at the origins then probably the

mathematician.

Gauss was the first one who derived the density function of the normal distribution when he

was studying the planetary observations and he derived it as the distribution of the errors so

that is why it is also called error distribution and also the function which we use e to the

power –z square/2 this is also called error function,  but then one of the important results

which is called central limit theorem.

So  initially  it  was  obtained  as  a  limiting  form  of  binomial  distribution  or  the  Poisson

distribution, but then later on it was found as a general limiting distribution. So let me state

some of these main developments.
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So the first one is called you can say Poisson it is actually called de Moivre–Laplace central



limit  theorem,  but  I  will  just  for  short  I  will  call  it  Poisson central  limit  theorem.  It  is

basically named after the de Moivre–Laplace. The result is that if I consider X to be a Poisson

distribution  with  parameter  lambda.  Let  us  consider  say  Y=x-lambda/root  lambda.  That

means this is actually the standardized form.

The reason is that in Poisson distribution mean and variance both are same=lambda. Let us

look at the moment generating function. Consider the m. g. f of y so Myt that is= expectation

of e to the power ty that is= expectation of e to the power t x-lambda/root lambda. So this

is=e to the power-root lambda*t then this is nothing, but moment generating function of x at

the point t/root lambda.

Moment generating function of the Poisson distribution is known to us so that we write for

t/root lambda so that is= e to the power-root lambda t e to the power lambda *e to the power

t/root lambda-1. So we can do some simplification here it is e to the power –root lambda t+

lambda. Consider the expansion of this 1+t/root lambda +t square/2 lambda and so on-1. So

easily you can see this 1 cancels out then next term root lambda t also gets cancelled out.

And if I take the limit as lambda tends to infinity then all the term here will get cancelled out

except the third term here. So this will converge to e to the power-t square/2 as lambda tends

to infinity rather +t square/2. So this is the moment generating function of normal 0, 1. So we

conclude that the distribution of y converges to normal 0, 1 as lambda tends to infinity. Now

this is one of the first manifestations of normal distribution or you can say origins.

Because what we are seeing we are looking at actually the rate of arrival in a Poisson process

is not it that is we are looking at how many occurrences in an interval of length t. So that is a

discrete random variable, but as lambda becomes large that means the rate is more that means

there  will  be  more  and more  number  of  occurrences.  So this  can  be approximated  by a

continuous distribution.

So here what we are saying is after standardization it is becoming x-lambda/root lambda that

is normal 0, 1 that means roughly we are saying x has a normal distribution with mean,

lambda and variance lambda.
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Let  us  look  at  another  one  which  I  call  say  binomial  limit  theorem  or  which  is  again

attributed to de Moivre–Laplace. So let us consider say x follows binomial n, p distribution.

And once again let  us consider say Z=X-np/root  npq. Let  us again consider  the moment

generating function of z that is=expectation of e to the power t x-np/root npq. So that is=e to

the power-tnp/root npq and the remaining part will be moment generating function of x at the

point t/root npq.

Moment generating function of the binomial is q+ p e to the power t whole to the power n. So

from there we conclude that it is e to the power-tnp/root npq q + p e to the power t/root npq

whole to the power n. So this we can write as e to the power-tnp/root npq and this term we

write as q I write as 1-p. So I can write as 1+p e to the power t root npq-1 whole to the power

n.

This one I can expand so this is becoming e to the power –tnp/root npq 1+p. So this will

become  1+  something  so  that  1  will  cancel  out  and  you  will  get  t/root  npq+  t

square/npq+2npq and so on. That means higher power of t will come and higher power of n

will come here. So if I take the limit as n tends to infinity. See this term will give me n time

here so that will get cancelled out.

And then the remaining term will give me again t square because this npq term with n will get

cancelled out. So as this tends to it will converge to e to the power t square/2 as n tends to

infinity.
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So we have the second central limit theorem that is binomial distribution converges to normal

0, 1 as n tends to infinity. We have earlier seen that as n tends to infinity and p tends to 0 such

that  np  tends  to  lambda  then  binomial  converges  to  Poisson,  but  if  we  simply  have  a

condition that n tends to infinity then actually the binomial distribution can be approximated

by a normal distribution.

(Refer Slide Time: 09:29)

Now from here actually we have the more general central limit theorem. Let x1, x2 etcetera

be a sequence of independent and identically distributed random variables with mean mu and

variance sigma square. Let us consider say xn bar to be the mean of the first n variables here.

Then the distribution of xn bar-mu/sigma * root n converges to normal 0, 1 as n tends to

infinity.



In fact this is one of the basic central limit theorem. Here I have made the assumptions that

the  random  variables  are  independent  and  identically  distributed  so  with  mean  mu  and

variance sigma square. Actually what is the significance of this result? What I am saying here

is that if I consider the mean of the observations then that will be normal no matter what is

the original distribution.

An alternative version of this can be written in terms of the summation also like if I consider

Sn= sum of the first n observations then the central limit theorem will be Sn-n mu/root n

sigma then this will converge to z which follows normal 0, 1 as n tends to infinity that means

either  we consider  the  sample  sum or  the  sample  mean  the  limiting  distribution  will  be

normal no matter what is the original distribution.

Of  course  we  have  to  have  the  existence  of  the  mean  and  the  variance.  Later  on  the

generalization of this results have been done to the sequence of random variables which may

be non identically distributed that means you may have here mu I and here you may have

sigma I square, but then you can consider the suitable version here by replacing by the mean

of the first n mean and here similarly convergences.

So  similar  versions  do  exist  later  on  and  of  course  the  condition  will  be  slightly  more

stringent rather than we consider variance we consider something more than the variance that

is more than the second moment should exist and then even more further generalizations are

there where the concept of independent has also been relaxed. However, in this course I will

not be mentioning the full statement of this central limit theorem.

Those who are interested may look at some of the books on limit distribution or the advanced

probability theory. For example, the book by (()) (13:05) Kingsman and Tailor etcetera where

all this results are mentioned. Now this is the result which actually places normal distribution

in  the  center  of  theory  of  statistics  because no matter  what  original  distribution  you are

starting with but if you consider the mean of the n random variables.

Then that is having a limiting distributing which is normal. Now what is the significance of

this? The significance is that in most of the practical problems for example you can see here

the  problem of  measurements  for  example  how the  Gauss  arrived  at  it  because  he  was

considering  the  measurements  of  the  astronomical  distances  and  many  other  planetary



observations he was considering.

So that mean in place of one observation you will  take several times the observations to

account for the error and then you will take the average of those observations rather than

taking individual observation you consider the average of the measurements taken several

times. So Sn becomes large this convergence is to the normal distribution. So this is one of

the practical aspects also.

For  example,  if  you  consider  the  performance  of  a  student  in  an  examination.  Now  in

examination different questions will be there because the question paper consists of several

questions for example it may have 30 questions or it may have 50 questions. So the score of

the  student  will  be  actually  the  total  performance  over  all  the  questions  that  means  the

assumption of n being large can applied and if we assume that his ability in answering the

questions will be similar.

Then the marks or the score of the student can be considered to be normally distributed.

Similar thing happens almost in various areas of human life. For example, if you consider

human abilities or the height of a person say the distance a person can travel in an hour and

so on. Many of these things have been found to follow normal distribution. Related to this

central limit theorem there are some other simplistic concepts also which we call in general

laws of large numbers.

Let me just mention the simplest version as we have mentioned here this for the independent

and identically distributed random variables. Before that briefly I will just mention because

here we are talking about the convergence. So this convergence is clear in what sense it is. I

am shown m g f converges which means that if I am considering the cdf then cdf of this

quantity will converge to the cdf of normal 0, 1.

And similarly in the binomial if I am considering the cdf of x-np/root npq then that will

converge to the cdf of normal 0,1 and similarly for the Poisson. So that means I am talking

about something like convergence in distribution. Now likewise I can introduce some more

convergences. Here in a brief form I will introduce those convergences and based on that I

will talk about the laws of large numbers.



So the concept of convergence of random variables. Although I will not go into deep in this

concept here. I will only mention those who are interested may read the advance text on the

probability theory as I mentioned just sometime before. In particular, there are 4 types of

convergences. The first one is called Almost Sure Convergence. So a sequence of random

variables.

Of course we assume that the probability space will be the same for all of them. So Xn is said

to converge almost  surely that  is  I  will  write  in  short  to  a.  s  to  a  random variable  X if

probability of the set such that Xn omega converges to X omega is=1. This is called Almost

Sure Convergence.

(Refer Slide Time: 17:58)

Then you have Convergence in Mean. So actually I consider rth mean. If we have expectation

of modules Xn-x to the power r converging to 0. So we say a sequence of random variables

Xn converges to X in rth mean if expectation of modules Xn-X to the power r goes to 0 as n

tends to infinity. So we say here Xn converges to X in rth mean. The notation for almost sure

convergence is we write Xn converges to X almost surely.

So similarly we have convergence in rth mean then we have convergence in probability. So

once again a sequence of random variables Xn is said to converge to a random variable X in

probability if for every epsilon>0 probability of modules Xn-X > epsilon this goes to 0 as n

tends to infinity. We actually write in notational terms as Xn converges to X in probability

and sometimes capital P and sometimes small p is used and the convergence in distribution

which we actually used in the central limit theorem.



But let me formally write it convergence in distribution also it is called convergence in law.

So let us consider say Xn has cdf Fn and x as cdf say Fx. So we say a sequence of random

variables Xn converges in distribution to X.

(Refer Slide Time: 20:25)

If Fnx converges to Fx for all continuity points of F that means this x is a point at which F is

continuous and the notational is Xn converges to X in distribution or sometimes we say Xn

convergence to Xn law. The first thing is that one should ask that what is the relation between

these various types of convergences. So without going into proves and other things I will

mention this thing.

(Refer Slide Time: 21:05)

Convergence almost surely implies convergence in probability convergence in mean implies



convergence in probability and of course convergence in probability implies convergence in

distribution. Of course neither of convergence almost surely or rth mean imply each other

without any conditions. In general convergence almost surely does not imply convergence in

rth mean and vice versa.

Convergence  in  probably  does  not  imply  convergence  almost  surely  convergence  in

probability does not imply convergence on rth mean. Convergence in distribution does not

imply convergence in probability. So actually we can describe this relation that means the

flow of convergence in  the form of a funnel.  So you have convergence to almost  surely

convergence in rth mean.

So suppose I pour a liquid in a funnel then the liquid will flow down so this is convergence in

probability and this is convergence in law or distribution. So convergence is almost surely

implies convergence in probability. Convergence in probability implies convergence in law.

Convergence in rth mean implies convergence in probability, but neither of this imply each

other.

Of course under certain conditions convergence almost surely will imply convergence in rth

mean and vice versa. Similarly, if I impose some condition on the convergence in probability

it  will  imply convergence in rth mean or it  will  imply convergence in almost  surely and

similarly if I put some condition in the random variable then convergence in law may also

imply convergence in probability.

Now the purpose of giving this one is to tell about laws of large number like you have the

central limit theorem we have strong law of large numbers. So let x1, x2 and so on be a

sequence of independent and identically distributed random variables with mean mu. Then

1/n sigma Xi=1= 1 to n. This converges to mu almost surely that means in the long run the

mean of observations is converging to its actual unknown or original mean.

Similarly, if I consider that is called weak law of large numbers.
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That is under the conditions given above 1/n sigma Xi converges to mu in probability. So the

names weak and strong law are simply related  to  the stronger  convergence  here and the

weaker convergence here, but both are true and actually the generalization of these results are

there for example on i .i. d. random variables or the random variable which are independent,

but not identically distributed or dependent and so on.

So I have stated it in simplest form. Now what is the practical meaning of this one. Now the

practical meaning you can see here that as we consider observations repeatedly then what we

are saying is that the average performance or average measure or average yield or average

height etcetera it will converge to the true value of the mean. So now these are the useful adds

in the sampling because when we do the sampling I will  be just be coming through that

concept in it little time.

We are considering the sample mean there. So what we are concluding here is the sample

mean is almost becoming equal to the population mean Sn becomes large. So that is what

allows us to use statistics in practical sphere. Let me come to those concepts now. Let me just

to wind up this particular section let me mention few things. We have considered certain

continuous distributions.

Initially  I  started  with  the  distributions  which  are  arising  as  the  waiting  time  of  the

occurrences. Now waiting time of the occurrences has one important interpretation that is

they can be considered distributions which are representing life of system, life of components

for example you are considering mechanical system, electrical system, electronic system or



any type of organism.

If we are considering the failure first failure or rth failure etcetera, then those distributions

can be modeled by exponential gamma distribution etcetera then we also considered in terms

of failure rate and then we could look at the distributions which are like Weibull distribution

or extreme value of distributions etcetera then I will consider one of the simpler one which is

called the uniform distribution and then I have introduced the normal distribution.

I  have established now that  it  is  one of  the most  important  distribution  in  the theory of

statistics because of the law of averages that we are saying that if I consider the average of

the observation then that is having approximately normal distributions We have also seen the

laws of large numbers that is not to say that there are not other important distributions. There

are very large number of continuous distribution that one can think of.

For example, in the normal distribution I am considering the tails to go rapidly to 0 because e

to the power x-mu square/sigma square when we are considering. So as X goes to +infinity or

–infinity the shape of the curve that means it goes to 0 it goes to 0 very rapidly, but there may

be distributions where you may not require that. For example, in place of square you may

have only linear.
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Then  that  gives  you  double  exponential  distribution  or  which  is  also  called  Laplace

Distribution.  Laplace  are  double  exponential  distribution.  So  I  will  just  write  down  the

density ½ sigma e to the power x-mu/sigma. So here you can see that tails will be flatter than



that of a normal distribution, but of course here mean is again mu median is mu and the peak

is also at mu that is the mode is also mu that is called double exponential distribution.

The name double exponential because in the usual exponential distribution you have only one

side. Now I have both the sides here so that is why the name double exponential  is also

coming. You can think of even flatter versions that means in place of exponential function

you have only quadric or something like that that means even flatter tails may be there. So for

example you have Cauchy distribution.

So let me write the simplest form 1/1+x square or a general version of this could be 1/1+x-mu

whole square. So let me put sigma square here and then you may have 1/pi and 1/ sigma will

be coming here that is –infinity <x < infinity –infinity< mu < infinity and sigma positive.

Now this is applicable to system or you can say where the convergence to +infinity or –

infinity is quite slow.

For example, you may consider the decay of radioactivity of say nuclear fallout. So as you

know that it is very prolong process and the similar thing in various chemical degradation

etcetera you can see the time taken to complete the process may be too large. In fact, Cauchy

distribution I gave as an example earlier in fact here the mean itself does not exist this is

symmetric. Here mean does not exist. So that means higher order moments will also not exist.

So median is mu, mu is median. Similarly, we have distributions such as beta distribution log

normal  distribution.  There  are  quite  a  large  number  of  basically  there  is  a  family  of

distribution that can be described using various functions. So I will stop this discussion here

let  us  move to another  concept  that  is  of  sampling.  That  means we move to  the  use of

probability theory for making inferences.

So  to  start  with  extremely  simply  problem.  Suppose  we  want  to  estimate  the  average

expenditure on the say medical by the people of for example by the people of a state or by the

people of a country. Now what one has to do for this study that means one thing is that you

take the data from each household of the country, but this not a very useful situation because

in a similar way one may be looking at expenditure on say education.

One may be looking at  the expenditure on entertainment,  one may be looking at  the say



expenditure on travel and so on. Now if one does a complete enumeration of the population

for each of this thing then it is going to be horrendous task and practical studies cannot be

done because for example if you are having a large geographical area a country or a state then

you will not be able to conduct it in a very reasonable point of time or in a very reasonable

timeframe.

And also the resources that will be required will be huge. So what one suggest is that one can

use sample. Now the theory of sampling I will be covering at other point of time right now I

am introducing from the point of view of distribution that we look at the distribution that

arise in the sampling. So suppose we have taken a sample. So let us consider now why the

sampling is justified.

Now that is because of the laws of large number and the central limit theorem because in the

long run what we are saying is the sample mean acts as the population mean. The distribution

of the sample mean after certain normalization converges to a normal distribution and so on.

So these are the properties which allows us to use the sampling.
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So let me briefly go to the sampling. So let x1, x2, xn be a random sample from a population

with  distribution  some  distribution  it  will  have  say  capital  F  and  you  may  have  some

parameter there F theta the theta maybe vector or scalar theta maybe theta 1, theta 2, theta k

where  k  could  be  greater  than  or=1.  As  you  have  already  seen  examples  like  binomial

distribution you have 2 parameters n and p.



In  Poisson  distribution,  you  have  parameter  lambda  which  is  one  parameter.  In  gamma

distribution you have parameter r and lambda, in exponential distribution you have parameter

lambda and so on. So when I say this is random sample from this basically I am saying each

of x1, x2, Xn will have independent and identically distribution F. Now I consider a function

say T of x1, x2, Xn this is called a statistic.

For example, X bar say S square suppose I consider 1/n-1 sigma Xi- X bar whole square.

Suppose I consider say range that is maximum-the minimum and so on where this x1 is the

minimum of the observations Xn is the maximum of the observations and so on. So these are

all example of statistics. Now distribution of a statistic is called a sampling distribution. Now

by the central limit theorem.

We can say that normal distribution itself a sampling distribution because I am obtaining it as

a  limiting  distribution  or  asymptotic  distribution  of  the  sample  mean.  So  asymptotic

distribution  of  sample  mean  of  course  under  certain  conditions  is  normal.  So  normal

distribution is a sampling distribution. Let us also consider say for example I gave you the

linearity property of the normal distribution

I also discussed the additive properties of some distributions. For example, if you add certain

random variables which are geometric then the sum will become negative binomial where the

probability of p of success in individual trial is considered to be constant. We looked at the

sum of exponential then that is gamma and so on. A similar property is true for the normal

distributions also.

Here this asymptotic distribution is normal, but if original distributions are normal then the

sum is also normal.
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So I state the general linearity property of normal distributions. Let us consider say x1, x2,

Xn independent where Xi follows normal mu i sigma i square or i=1 to n. Then if I consider

say Y=sigma ai Xi+ bi that is a general linear combination of x1x2 Xn then that is following

normal with ai mu i+ bi sigma ai square sigma i square. 
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So in particular if I am taking the mean here then that will also have mean which is the mean

of these mu1, mu2, mu1 and if I take the variances then this will become sum of the variances

and divided by n square. In particular, if I take if x1, x2, xn follow normal mu sigma square

that means if they are independent and identically distributed then X bar will follow normal

with mean mu and variance sigma square/n.

So normal distribution itself is a sampling distribution in the finite sense also.  Here it is



asymptotically a sampling distribution, but here it is a fixed sample size also it is a sampling

distribution. Now let me introduce some other sampling distributions which arise in the study

of distributions of various statistics. So let us consider first which is known as Chi-square

distribution.

Let W be a continuous random variable.  It is said to have chi square distribution with n

degrees of freedom. So the parameter of chi square distribution is actually called degrees of

freedom. If its pdf is ½ to the power n/2 gamma n/2 e to the power-w/2 w to the power n/2-1.

Here of course n is positive. See if you look at it carefully this is actually nothing, but a

gamma distribution. This is gamma distribution with actually n/2 and ½.

R=n/2 and lambda=1/2. So this is actually not a new distribution, but I am introducing it as a

separate  name  chi  square  distribution  because  I  will  show it  as  a  sampling  distribution.

Notationally,  we  write  it  as  w  follows  chi  square  n.  Let  us  introduce  it  as  a  sampling

distribution.
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If  say  X  follows  normal  0,  1  then  if  I  consider  say  Y=x  square  and  we  can  derive  a

distribution very easily in fact let me just demonstrate it here what is the density function of

this that is 1/root 2 pi e to the power –x square/2. So if I consider x square this is a (())

(42:34) transformation so I will get it as ½ to the power 1/2 gamma 1/2 that is 1/root 2 pi e to

the power –y/2 Y to the power 1/2-1 which is nothing.

But that is y follows chi square distribution on one degree of freedom which is again gamma



and in gamma we know that if lambda is common then additive property is followed. So if I

consider if x1, x2, xn are independent and identically distributed normal 0,1 random variables

then sigma Xi square that will follow chi square on n degrees of freedom. Now that is one

derivation of the chi square distribution as a sampling distribution.

It is arising as the distribution of the sum of squares of n observations from a standard normal

distribution, but we also can derive it from a general normal distribution.
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If x11, x2, xn follow normal mu sigma square. I have introduced S square that is S square

was 1/n-1 sigma Xi-X bar square. Then n-1 S square/sigma square that will follow chi square

distribution on n-1 degrees of freedom. So this shows it has a sampling distribution of the

sample variance also X bar and S square independently distributed. For more details about

the derivation of this and this results etcetera you may look at the (()) (44:38) lecture on

probability and statistics.

And also you can look at the books which I have mentioned in the references. So I will not

get into too much details of each of this distribution. Let us just look at the properties of this

thing.
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If we look at the form of the density function this function is actually if we plot it of course it

will depend upon n, but it is positive so it will be usually positively skewed. In fact, let us

look at the coefficient etcetera.
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Let  me  write  expectation  of  chi  square  is=  to  the  degrees  of  freedom,  variance  of  chi

square=twice the degrees of freedom. It is a moment generating function is=1/1-12 t to the

power+ n/2 for t<1/2. If we look at the measures of skewness and Kurtosis it turns out that

the third central moment is=8n which is of course positive, but if I look at say measure of

skewness then you can see it is=root 8/n.

So of course this goes to 0 as n becomes large. That means it will converge to symmetry if n

is large which is okay because I am obtaining chi square as the distribution of a sum here. If



you look at the distribution of the sum, then by central limit theorem as n becomes large. The

distribution of sigma Xi square-n/root 2n that will converge to normal 0, 1. You can actually

write here suppose I am calling it as a U then u-n/root 2 n that will converge to normal 0,1 as

n tends to infinity.

So therefore you can also look at the measure of kurtosis mu 4 is 12 n*n+4. So beta 2= 12/n

which is positive, but this goes to 0 as N tends to infinity. Then regarding the calculation of

the probabilities like in the normal probabilities all the probabilities we were able to calculate

through the standard normal probability curve which are tabulated. Now for the chi square

distribution if you see you are considering again if you look at the probabilities related to this.

This will give you a incomplete gamma function. Now for various values of n the tables of

chi square cdf are tabulated, but that will be too complicated. So to consolidate or you can

say to make it in a compact form what is tabulated is of this form. If this probability is alpha,

then this  point is called chi square n alpha.  That means probability of W > chi square n

alpha=alpha.

So for different values of n and alpha this percentile points of chi square distribution this is

called upper 100 alpha percent point of a chi square n distribution. So the tables of this are

given in almost all the statistical books and tables this is tabulated. So for example you can

see if I have n=10 and alpha= 0. 1 then the value is given to be 4.865 and so on. Here actually

let me see this is 0.05 is actually 1-alpha so that will be= 0.95 so the point is for example

3.94. 

If I take 0.9 then it is 4.865 and so on. So the tables of chi square and alpha are given for

different values of n and alpha. And as I have mentioned that Sn becomes very large it is not

required because then the distribution of U-n/root  2 and can be approximated by normal

distribution so those tables are not given. Generally, in the book they tabulate up to n=30 or

sometimes up to 60 or something like that.

So  we  have  shown  chi  square  as  a  sampling  distribution  in  sampling  from  a  normal

distribution. Let us look at some further sampling distributions.
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The next one we call  Student’s t  distribution.  Let X follow normal 0,1 and Y follow chi

square n and Xy be independent. Then if I define t=x/root y/n then this is said to have a

Student’s t distribution on n degrees of freedom and we write here t follows t on n degrees of

freedom. This name is student actually because of statistician W. S. Gosset who gave it in

1907, but he (()) (50:59) published under the student that is why it is called a Student’s t

distribution.

One can easily derive the density function of t that is 1/root let us give the exact form here

that is 1/root n beta n/2 1/2 1/1+ t square/n to the power n+1/2. As you can see this is also

symmetric distribution around 0 and it has some important things for example expectation

will be 0. The variance of T is n/n-2 of course you can see that this will converge to 1 as n

tends to infinity.

And if we look at mu 4 and say beta 2 here beta 2 for this distribution is actually=6/n-4 which

is positive. Actually this distribution is closely resembling a normal distribution.
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And in fact you can prove as n tends to infinity the pdf of T distribution converges to phi t

that is the standard normal. Now usually for n > or=30 the approximation is quite good and

that  is  why generally  the tables  of t  distribution  will  be tabulated  up to  n=30 only. And

because  of  the  symmetry  if  we consider  the point  here t  n  alpha  that  is  this  probability

is=alpha probability of t> tn alpha=alpha.

So for different values of n and alpha t and alpha values are tabulated. So this is called the

upper  100 alpha% point  of  the  t  distribution.  Now to  look at  it  as  more  as  a  sampling

distribution.

(Refer Slide Time: 53:30)

If I consider say x1, x2, xn follow normal mu sigma square and if I consider say X bar then x

bar follows normal mu sigma square/n. Therefore, if I consider x bar-mu/sigma *root n that



will follow normal 0,1. At the same time if I look at n-1 S square/sigma square that follows

chi square on n-1 degrees of freedom and these 2 are independent as I mentioned earlier. So if

I consider root and X bar-mu/sigma/ root of n-1 S square/sigma square* degrees of freedom

here. Then this will follow t distribution on n-1 degrees of freedom.

But if you simplify this then you get this as root n X bar-mu/S. So here you differentiate this

is root n X bar-mu/sigma that is normal 0,1. Root n x bar –mu/S is t distribution on n-1

degrees of freedom. So this is a sampling distribution. To the end, I will define one more

distribution that is called F distribution. Let say W1, W2 be independent chi square say m and

chi square n random variables.

Then let us define W1/m/w2/n let me call it F. Then this is said to follow F distribution on m

n degrees  of  freedom that  is  F  distribution  on  m n  degrees  of  freedom.  One  is  for  the

numerator chi square variable  and one degree of freedom for the denominator  chi square

variable. One can again write down the density function pdf of this F can be written as so that

is let us say fx that is= m/n to the power m/2 X to the power m/2-1, 1+m, nx to the power m+

n/2 where x is positive.

So this is the pdf of this. One can derive it using the usual distribution theory and you can

easily see that this is a skewed distribution.
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You will have of course it will vary with the value of m and n but various forms will be

skewed here. These are the things and just to give you if I consider say one of them and I



consider  this  alpha this  probability  was alpha and this  is  called f,  m,  n alpha that  is  the

probability of F>f, m, n alpha this is=alpha.
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Another thing that you can notice here is that I consider 1/f here I/f is also f that will be f on

nm degrees of freedom. Therefore, if I find out the relation 1/f mn alpha that is=fnm 1-alpha

this relation is there. So for different values of m and n and alpha the values of f, m, n alpha

has been tabulated. So one can look at, but since this is 3 dimensional things. Therefore, only

for selected values of alpha you can find the tables of the percentile points of f distribution.

So I have given important distributions as the sampling distribution.
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Just to end here let me give you here suppose I consider a random sample from normal mu 1



sigma 1 square and I define S1 square as 1/m-1 sigma Xi-X bar square. Similarly, I consider

another random sample from normal mu2 sigma 2 square whereas 2 square is 1/n-1 sigma y j-

y bar square then if I consider S1 square/ sigma 1 square/S2 square/sigma 2 square that will

have f distribution on m-1, n-1 degrees of freedom. So this is also a sampling distribution.

I have derived normal distribution, chi square distribution, t and f distribution as sampling

distributions  when we are sampling from the normal populations,  but normal distribution

itself is a sampling distribution in a more general form, more general sense because it is also

a  sampling  distribution  of  the  sample  mean  from  any  population  with  of  course  finite

variance provided the random variables are i. i. d. So you consider a sample mean.

And the conditions have been relaxed also that means that identical thing can be relaxed or

independent  thing  can  be  relaxed  and  therefore  in  a  more  general  sense  in  a  normal

distribution is a sampling distribution. These sampling distributions are very useful when we

will do the inference that means we will consider confidence intervals for the parameters of

mean  and  variances  when  we  will  consider  the  testing  of  hypothesis  for  the  mean  and

variances etcetera.

So in the next module of this course, we will be covering various aspects of this. You can

look  at  the  problem sets  on  this  module  of  probability  and  distribution  theory  which  is

available on the website so that will be very useful to look at the problem for this. With this, I

complete this section.


