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Welcome to this first lecture in a series of lectures for the course titled algebraic curves

and Riemann surfaces.

(Refer Slide Time: 00:48)

So, let me quickly tell you to begin with what the goals of the present lecture are. So, in

this lecture, we will first try to understand the idea of a Riemann surface, and second we

will try to look at some examples. So, before we begin let me try to recollect some basic

ideas from complex analysis that is functions of one complex variable. So, we look at a

function. So, here is a complex plane which we call as a z-plane. And suppose we have

an open set u in the complex plane and we have a function f which is defined on this

open set u, you can think of u as the interior of this, this amoeba like region that I have

drawn here and the function takes complex values again.

So, there is another copy of the complex plane and we call this the omega plane where

omega is the variable is the image of the variable z under f. Of course, this is the origin

in on both planes and this is the real axis, this is the imaginary axis. And likewise we

here have the real axis and we have the imaginary axis. And the idea is to recall what it

means for a function to be holomorphic or analytic at a point z naught in this open set u.
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So, recall  that f of z is said to be analytic or holomorphic at  z naught, if one of the

following three equivalent conditions holds. So, the first condition is that if you write

omega as u plus iv, so that u becomes the real part of f and v becomes the imaginary part

of f. Then we want that the first partial derivatives u x which is dou u by dou x the first

partial derivative of u with respect to x, and then u y similarly dou u by dou y; and then v

x dou v by dou x, v y is dou v by dou y exists.
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And or continuous and further satisfy the Cauchy-Riemann equations u x is equal to v y

and v x is equal to minus u y for all z in a neighborhood of observe of the point z naught.

So, this is one condition that would define f to be analytic or holomorphic at the point z

naught. There are and usually this is the condition that you come across in a first course

in complex analysis, which I think all of you have done. The next condition that is used

to define the holomorphicity or analyticity of a function at a point is the usual definition

the down to a definition that the function is differentiable not only at that point, but at

every point in a neighborhood of that point. So, it is a straightforward definition.
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So, it is that is what I am going to write down the second definition the limit as delta is z

tends to 0 of f of z plus delta z minus f of z by delta z exists for every point z in a

neighborhood  of  z  naught.  So,  this  is  the  condition  that  the  function  is  not  only

differentiable at that point, but it is also differentiable at every point in a neighborhood of

that point. And then the third condition, which is a condition which is also often adopted

is that the function is represented by a convergent power series in a neighborhood of the

given point z naught.

So, let me write that down there exists a power series of the form sigma n greater than or

equal to 0 a n z minus z naught to the power of n which is convergent to f of z for each

point z in a neighborhood of z naught. So, these are the three equivalent definitions of a

function being analytic or holomorphic at a point. Now, let me make some remarks about



these  definitions.  The connection  between one and two is  that  the  derivative  can  be

expressed in terms of u and v. So, let me write that former down, the connection between

one and two is the derivative of f is just the partial  derivative of f with respect to x

namely it is u x plus i v x.

And the connection between two and three is what I would call as most spectacular it is

this amazing thing which says that if a function is differentiable not only at a point. But

in a neighborhood of that point then the function is actually infinitely differentiable that

is because you see you would have studied that a power series a convergent power series

it  allows  you  to  differentiate  it  term  by  term and  the  differentiated  series  also  is  a

convergent power series with the same radius of convergence. And since you can do this

ad  infinitum  it  amounts  to  saying  that  a  convergent  power  series  is  infinitely

differentiable and see requiring that such a convergent power series converges point wise

to the function f of z also therefore, requires that f is infinitely differentiable.

So, what is spectacular about two that two and three are equivalent is this amazing fact

that  differentiability  once at  all  points in a neighborhood of a given point  gives you

infinite  differentiability  for  all  points  in  a  neighborhood  of  that  point.  And  this  is

something that I hope all  of you would have realized when you did a first course in

complex analysis that is the major distinguishing feature between functions of one real

variable and functions of one complex variable.
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So, the connection between the a ns is that they are actually the Taylor coefficients. So,

let me write that down the connection between, so let me write it two and three is. So, the

first thing is once differentiable in a neighborhood implies infinitely differentiable in a

neighborhood.

(Refer Slide Time: 11:51)

And then the next thing is that a ns are actually given by the nth derivative of f at z

naught by factorial n where the nth derivative of f is just differentiating f n times with

respect to z. So, that this power series to which converges to f is nothing but the Taylor

expansion of the function f around the point z naught is just the Taylor expansion. So,

this is just recall the idea of an analytic function. So, we will proceed to some further

properties of analytic functions which I will require in the in the sequel. Now, I also want

to recall  another important  fact,  which is the following. So, recall  again an injective

holomorphic map is a holomorphic isomorphism, so this is again a deep fact.



(Refer Slide Time: 13:49)

So, if you have a holomorphic map say f is holomorphic map from u to c where u is an

open subset. And if f is holomorphic on u and f is injective that is if f is holomorphic and

f is injective then f of u is open, in fact, f is what is called an open map it will take open

sets to open sets. And since f from u to f u is a bijective map you can make sense of the

set theoretic inverse from f u to u and it is a deep fact that f in that set theoretic inverse is

also holomorphic. And f inverse from f of u to u is also holomorphic.

So, therefore, the important thing about this is that if you have a holomorphic map, and

you know that it is injective, then you do not have to put the extra condition that the

image of the open set on which its defined is open that comes automatically. Because it is

an  open  map  which  means  it  takes  open  sets  to  open  sets.  And  you  also  have  the

condition that the inverse map is not only continuous it is actually holomorphic. So, what

this tells you is that whenever you have an injective holomorphic map that is actually

giving you a holomorphic isomorphism with the image of the source with the image. So,

this is another thing that we would use. So, now let us try to go and try to understand the

idea of a Riemann surface. So, let me rub this half.
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The idea of a Riemann surface, so what I am thinking of to begin with, so that we are

down to earth and we have the concrete gasps grasp of kind of ideas that we want to

formulate is the following. So, we start with the surface start with a surface say like this

sphere or  torus  or  cylinder  that  you can visualize  in  three  space.  You start  with the

surface. So, let me draw pictures of these. So, here is the here is this sphere S 2 and then

here is a torus which we call as T 1. And then you can also think of a cylinder of course,

is I will make this dotted line, so that I just wanted to understand that this is not the

mount your cylinder, but this is an infinite cylinder. So, these are all surfaces these are all

surfaces that you can imagine in three space and more generally you can also imagine

some surface like this in three space more generally any surface like this.

And what is it that I want to do is the following. Suppose I am suppose I am given a

point x naught on that surface, and suppose I am given a small neighborhood of that

point which looks like a disc. So, I can think of a similar situation on each of these

surfaces, I have a point x naught and a small discs surrounding it. So, when I say a small

disc surrounding it the disc is not flat you know because the surface is curved. So, it is

some kind of a curved disc, but topologically you can flatten it and think of it as a disc in

the  complex  plane.  So,  when  I  say  I  have  a  point  in  the  disc  like  neighborhood

surrounding it  I  mean that  there  is  small  neighborhood surrounding the  point  which

topologically looks like a disc in the complex plane. And well on a general surface also

here is my point and here is my disc a disc like neighborhood. And suppose that so I let



me call this more generally as x. So, x could be any one of the three or even other things

that you can think of.
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And what is it that I want to do? So, suppose you are given, so from D to C, suppose you

are given a function f from this disc like neighborhood to C. So, it is a complex valid

function. So, I have a surface I have a point of the surface and I have a small disc like

neighborhood D, and I have a function. And this function is defined for every point on

this disc which means it is also defined at  x naught and this function takes complex

values. And what is it  that I want to do, what I want to do is I want to formulate a

definition by giving a set of conditions as to when the function f is holomorphic at the

point z naught, at the point x naught.

So, we want to define when f is holomorphic at x naught this is what you want to do. So,

this is the point; I have a surface, I have a point and I have a small disc surrounding that

point disc like neighborhood surrounding that point and I have function is defined on this

disc. And I want to say I want to be able to say in a nice way in a clear way without any

ambiguity when the function f is holomorphic at that point x naught. So, what is it that I

want, I want to actually do the complex analysis that I do on the plane, I want to do that

same kind of complex analysis I want to do that on a surface. So, I want to be able to do

complex analysis on a sphere or on a torus on a cylinder wherever it is possible that is

the whole idea and it is because of this that Riemann surfaces are being considered. So,



the  main  use  of  Riemann  surfaces  the  idea  of  Riemann  surface  is  to  be  able  to  do

complex analysis on a surface.

So, well how do you define f to be holomorphic at x naught or more generally how do

you define f to be holomorphic at every point on D if you want. How do you do that

there is a there is a very easy way of doing it in the following sense, which is also very,

very natural very, very intuitive it is the following. So, what we do one way to do this do

this is to identify D with an open subset say the unit disc delta in the set of all complex

numbers with modulus one, modulus less than one this is open unit disc by choosing a

homeomorphism.  And  by  the  way  let  me  remind  you  that  a  homeomorphism  is  a

topological isomorphism topological isomorphism phi from D to delta.

So, I have my D here which is sitting inside surface and which contains the point x

naught and I have this function f which is defined on D and which is taking complex

values. And my aim is to be able to say that f is holomorphic at a point of D. So, what I

do is I take an isomorphism topological isomorphism phi from D into the unit disc in the

complex plane, so this is subset of C. 

And then I take this composition what is this composition this is first I apply phi inverse

which  is  correct  because  phi  is  a  topological  isomorphism.  So,  phi  inverse  is  also

continuous map phi inverse is also in fact a topological isomorphism. So, I apply phi

inverse and then I compose it with f.  So, I will  get a map from the unit  disc in the

complex plane to  complex numbers.  So,  it  is  a  function from an open subset  of the

complex plane taking complex values; and for such a function it is very easy to define

when it is holomorphic at a point.

So, what I do is that I require that this function is holomorphic at the point here, which is

the image of the point x naught. So, and requiring that f circle phi inverse is holomorphic

at phi of x naught. So, I have just used the intuitive idea that the neighborhood of the

point that I have been given on the surface really looks like a disc. So, I identify that

neighborhood with the disc in the complex say the unit disc in the complex plane and

then using this identification I am able to get a function from that disc in the complex

plane into the complex numbers for which it is easy for me to say when it is holomorphic

at a point. So, it is a very intuitive definition. So, this a pair like this a pair so in fact, let

me also say that I can now say I can extend this definition not only to the point x naught



of D, but I can extend it to all points of D. So, I can say f is holomorphic on D if f circle

phi inverse is holomorphic on delta, because that way I have covered every point of D.
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So, you see in the same way we may say that f is holomorphic on D if f circle phi inverse

is  holomorphic  on delta.  So,  therefore,  you see what  you can understand is  that  this

choice  of  this  identification  phi  of  this  disc like  neighborhood with a  real  disc,  this

identification and this disc like neighborhood is a pair of data which is what is called a

chart,  it  is  called  a  complex coordinate  chart.  So,  the pair  D comma phi is  called  a

complex coordinate chart. 

So, I am now starting with a very intuitive point of view that a Riemann surface comes

up as trying to be able to do complex analysis on surfaces that we see in everyday life the

surfaces  that  you can really  imagine  concretely. So,  I  am starting with that  intuitive

definition. So, for the moment my surface x is I have not defined what a surface x is

formally, but I will  do that formally in the succeeding lectures for the moment I am

taking something very concrete that you can really see.

So, well a pair like this is called a complex coordinate chart and it is called a complex

coordinate chart because it allows you to do complex analysis on this disc D, this disc

like neighborhood D on the surface. So, you see so that is the purpose of a coordinate

chart. A coordinate chart provides you with a coordinate with which you can do complex

analysis. So, the idea is that if you call a varying point here as x then you can call a



varying point here which is in its image under phi as z. So, you have z is equal to phi of x

and this z is actually a coordinate on this complex plane.

So, what you have done is that you have somehow tried to give up a position at a unique

position to every point on this disc D, disc like neighborhood D. You are provided it with

a different symbol in a continuously isomorphic way, which is a complex variable. So,

that the resulting function becomes a function of one complex variable a function which

is defined concretely on an open subset of the complex plane for which you can do

complex analysis.

So, more generally what is a complex coordinate chart more generally I need not have

taken here disc like neighborhood I could have taken just any open set containing the

point and then I would have to choose again a topological isomorphism of that open set

with an open set in the complex plane. So, more generally what is a complex coordinate

chart more generally a complex coordinate chart is a pair u comma phi, where u is an

open subset of x, phi from u to v is a homeomorphism of u onto an open subset v of the

complex  plane.  So,  this  is  what  a  coordinate  chart  is.  And  you  can  now  see  that

somehow, so the more general diagram will look like this. So, I have this point x say x

naught and then. I have some open say q on the surface and I have an identification of

this  by  a  homeomorphism  a  topological  isomorphism  of  this  with  a  subset  of  the

complex plane.

So, here is my subset of the complex plane v. And this is chart this pair consisting of u

and phi is a chart. And why is it useful, it is useful because whenever I have a function f

defined on new taking values  in  C, I  can call  f  to  be holomorphic  if  the composite

function which is given by phi inverse followed by f is holomorphic. So, I chose to begin

with a disc because it is intuitive, but then instead of disc I could have had an open set.

So, at this moment it would appear that we could take for our definition of the Riemann

surface just a surface that we can imagine in three space, and which is equipped with a

set of charts like this such that these charts cover all of x that means, basically I want to

do  complex  analysis  on  the  Riemann  surface.  So,  given  any  point  of  the  Riemann

surface, it should be contained in a chart it should be contained in the u member of a

chart, so that I can use that chart to do complex analysis in that neighborhood of that

point. So, this could be taken as the as a working definition or the first definition.
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So, let me write that down, but let me also caution you that we will run into problems

very soon and that will tell you how the definition has to be modified. So, let me write

this down. So, preliminary definition of a Riemann surface is a surface x covered by a

collection of charts collection of charts u alpha phi alpha where alpha trans over some

indexing set. So, this capital I is an indexing set and for each element in I, I have a chart

u alpha comma phi of alpha and these u alpha should cover x.

So, let me write that down X is equal to union for alpha U alpha this ensures that at every

point of X, I can really do complex analysis using the chart that is available at that point,

but we immediately run into problems. What is the problem that we will run into it is a

kind of it is the following kind of obvious problem namely given a point it might occur

in more than one chart.  So, let us look at this situation,  but we run into problems as

follows. Suppose u alpha 1 and u alpha 2, both contain the point x naught. So, let us look

at this situation. So, let me draw diagram I would need a larger diagram.
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So, let me go and here. So, here is my surface. And I have one open set u alpha 1 and it is

equipped with a chart namely I have a phi alpha 1 which is homeomorphism of some u

alpha 1 with some subset of the complex plane which I will call it which I will call as v

alpha 1. And well on the other hand, my point x naught also lies in another open set

which is u alpha 2 which is the first member of the chart.  So, there is again another

homeomorphism phi alpha 2 which identifies this u alpha 2 with another open set let me

call that as v alpha two in the complex plane. So, this is my situation.

And suppose that I have a function f that is defined on this intersection. So, let me write

that there consider a function f from u alpha one intersection u alpha two to c suppose

you have  a  function  is  defined on the intersection.  So,  in  particular  you could  have

considered a function is defined in a neighborhood of the point x naught and you could

consider a small enough neighborhood, so that it is in the intersection. And the difficulty

we will run into is that is the following it is in trying to decide whether the function is

holomorphic at x naught or not. The reason is because we have two ways of defining f to

be holomorphic at x naught.

So, there is one way one way of saying that f is holomorphic at x naught is to say that

this composition this composition namely which is this f circle phi alpha 1 inverse, this

composition is holomorphic at the image of x naught onto this map. So, if you want I

will call that as z 1, so z 1. So, z 1 is phi alpha 1 x naught. And well the other way of



deciding that f is holomorphic at x naught is to require that this composition which is f

now followed by which is now phi alpha 2 inverse followed by f is holomorphic at the

point z 2, where z 2 is the image of x naught under phi alpha 2.
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So, let me write that down clearly f is holomorphic at x naught according to the chart u

alpha 1 phi alpha 1 if f circle phi alpha 1 inverse is holomorphic at z 1, and according to

u alpha 2 comma p alpha 2 if f circle phi alpha 2 inverse is holomorphic at z 2. So, you

get two definitions of f being holomorphic at the point x naught that is because you have

chosen two charts which are available around the point. And in fact, you could have an

infinite collection of charts and then that would give you a infinite set of definitions for f

being holomorphic at the point x naught. 

Clearly  this  is  not  something  that  we  want  because  we  you  know  that  the  idea  of

holomorphicity  for  that  matter  any property  of  a  function  has  to  be  intrinsic  to  the

function  it  should  not  be  a  property  that  should  be  ambiguously  defined.  All  good

properties  of  functions  like  continuity,  differentiability,  analyticity  or  holomorphicity

these should be intrinsic properties of functions they should be properties which do not

depend on let me say reparametrization, because after all what these charts are doing are

just reparametrzing that neighborhood around that point in terms of complex variables.

So, what we really do not want to happen is that for example, that f circle phi alpha 1

inverse  is  actually  holomorphic  at  z  naught,  but  f  circle  phi  alpha  2  inverse  is  not



holomorphic at z 2. What should not happen is that one of these is true and the others are

false the other  is  false such a  thing should not  happen. So, how do you remedy the

situation, you remedy the situation in the following way. You see I have this kind of a

situation where I do not want the function to be holomorphic with respect to one chart at

a point and it is not holomorphic with respect to some other chart.

So, how do I avoid this? So, you see it should be same to require the holomorphicity

using any chart. So, this is what the ideal situation is that no matter what chart you use.

The idea of a function being holomorphic at a point should be unambiguous because

holomorphicity is an intrinsic property it should be an intrinsic property of a function,

because holomorphicity should be an intrinsic property of a function.

So, let me repeat it should not be that because I have different charts my definition of

holomorphicity depends on a chart if I change the chart the holomorphicity is false, and

for some other chart the holomorphicity is true, I do not want such a thing to happen. So,

this tells you that the charts have to be compatible in a certain sense. And how do you get

this compatibility? So, you get this compatibility in the following way. You see to ensure

that the above the above happens we require we require the following.

So, let me first explain it using the diagram here. So, you see I have this, this shaded

region here this  shaded region here is u alpha 1 intersection u alpha 2 is the shaded

region here and that is of course, it is an intersection of two open sets. So, it is open. So,

in open subset of u alpha 1 and since phi alpha 1 is a homeomorphism. The image of this

here is going to be an open set in v alpha 1. So, I will get an open set here which I would

call as v alpha 1 2; and v alpha 1 2 is nothing but is just the image under phi alpha 1 of u

alpha 1 intersection u alpha 2. And similarly so this shaded region goes to this shaded

region here. And similarly this open set u alpha 1 intersection u alpha 2 goes to another

shaded region that I draw here which is again an open subset of v alpha 2 which I would

like to call as v alpha 2 1. So, v alpha 2 1 is phi alpha 2 the image under phi alpha 2 of u

alpha 1 intersection u alpha 2.

And now what I want you to understand is to look at this map. So, I look at this map

from this shaded region to this shaded region from this open set phi alpha 1 2 to this

open set v alpha 2 1. And how do I how do I get this map I first take phi alpha 1 I take

yeah. So, let me just for convention let me change the direction of the map. So, I first



take phi alpha 2 inverse, phi alpha 2 inverse will take this shaded region which is v alpha

2 1 into u alpha 1 intersection u alpha 2 and then I apply phi alpha 1.

So, actually I have a map from this shaded region to that shaded region. So, I call that

map as g 1 2. So, what is this g 1 2. So, g 1 2 is first apply phi alpha 2 inverse restricted

to v alpha 2 1 that will start that will take v alpha 2 1 to homeomorphically on to u alpha

1 intersection u alpha 2 and then apply phi alpha 1 restricted to u alpha 1 intersection u

alpha 2. So, I will compose this with phi alpha 1 restricted to u alpha 1 intersection u

alpha 2. So, it will go from v alpha 2 1 to v alpha 1 2. And you can see that this is a

composition of homeomorphisms. So, this is a homeomorphism, it is a homomorphism.

This is a homeomorphism because the restriction of a homeomorphism to an open set is

also  a  homeomorphism  and  a  composition  of  homeomorphism  is  again  a

homeomorphism. So, this is homeomorphism.

And what  is  it  homeomorphism it  is  a  homeomorphism of  two open subsets  of  the

complex  plane.  So,  I  can  require  that  to  be  holomorphic.  So,  require  the  following

homeomorphism g 1 2 to be holomorphic; after all its a homeomorphism basically it is a

mapping  from  an  open  subset  of  the  complex  plane  to  another  open  subset  of  the

complex plane I just wanted to be homeomorphism, I just wanted to be holomorphic. But

the point is it is already homeomorphism which means it is already injective. So, you see

by  remark  that  I  told  you  earlier  it  is  an  injective  holomorphic  map.  So,  it  is  a

holomorphic isomorphism.

So, what it will tell you is that it will tell you that g one two is not only not only is g 1 2

holomorphic, but g 1 2 is an open map and its inverse is also holomorphic. So, g 1 2

inverse is also holomorphic. So, putting this condition helps us it makes sure that you do

not get a conflict in these two definitions and why is that so it is because of the following

a simple observation.
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So, let me write that down. So, requiring g 1 2 to be holomorphic would also make it into

a holomorphic isomorphism by a remark that I recalled some time ago in the beginning.

And now why does this help, why does this condition help it helps because the following

reason. Because you see f circle phi alpha 1 inverse if I compose it with g 1 2, I get f

circle  phi alpha 2 inverse.  Because if  I  do not worry about writing these restrictions

which is a little cumbersome I just write this as phi alpha one circle phi alpha 2 inverse

with the meanings as to where these maps are being taken understood then I just write g

1 to as phi alpha 1. So, to phi alpha 2 inverse and then you know so if I in g 1 2 if I plug

in a phi alpha 1 circle phi alpha 2 inverse then you see I get f circle phi alpha 2 inverse.

And  you  see  that  therefore,  this  map  and  this  map  they  differ  by  holomorphic

isomorphism  and  therefore,  this  is  holomorphic  if  and  only  if  that  is  holomorphic

because g one two has an inverse if this is holomorphic g 1 2 is already holomorphic and

there is a composition of holomorphic maps. So, that is holomorphic and conversely if

that  is  holomorphic  I  can  multiply  on  the  right  by  g  1  2  inverse  to  get  this  is

holomorphic.  So,  the  above  equation  tells  us  that  f  circle  phi  alpha  1  inverse  is

holomorphic if and only if f circle phi alpha 2 inverse is, so there is really no conflict in

using these two charts to define holomorphicity.

And now if you require this condition to happen whenever you have two intersecting

charts in which case we say that those two charts are pair wise compatible then you are



in a good situation. So, we make this requirement that not only is the Riemann surface

just a bunch of is a surface which is covered by a collection of charts, but these charts

whenever they intersect on the intersection, these functions g 1 2, which are called the

transition functions these are called transition functions. And we want these transition

functions to actually be holomorphic.
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So, let  me write  that  down and that gives us a very ah concrete first  definition of a

Riemann surface. So, let me write that down. So, if we require that functions such as g 1

2 called transition functions to be holomorphic whenever u alpha 1 intersection u alpha 2

is non empty, we get a compatible collection of charts which gives a Riemann surface

structure on x.

So, let me again repeat that.  So, we started with trying to do complex analysis  on a

surface and we realize that we could do that if we had these complex coordinate charts.

And we want to be able to do that every points, so these charts should cover the whole

surface, but then we run into problems deciding whether a function is holomorphic at a

point because there may be more than one chart available at that point. And in order that

such ambiguity does not arise, we put this extra condition that for any two intersecting

charts, the transition function is holomorphic. And once you do that everything is fine.

So, you just take a collection of charts which are compatible with each other, this is the



compatibility condition and that gives you a Riemann surface structure on x. So, this is

the beginning definition of what Riemann surfaces. So, let me stop here 
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