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So, we are trying to understand the mapping properties of the modular function lambda,

which is you know, invariant under the action of the congruence mod 2 subgroup ofPSL

to z. So, let me quickly recall what we are trying to prove, have this function lambda of

tau which is which is given by e 3 tau minus e 2 of tau by e 1 of tau minus e 2 of tau. 

(Refer Slide Time: 00:55).

Lambda is a defined on the upper half plane, and taking values in the complex plane.

And in fact, it does not seem the value 0 and 1. And is analytic never is equal to 0 or 1.

And the claim was the following that if we take the following region in the tau plane, this

is a tau plane. We take this line segment, which is given by real part of tau is equal to 1,



this is the point 1 this is a origin. And then we draw we take this point given by half and

consider the semicircle centered at the point half and radius half. We take this region

omega, this region. The boundary of omega consists of this positive part of the imaginary

axis, and part of this semicircle the this semicircular arc. And then this positive part of

this slide parallel to the imaginary axis and then the claim was that so, the theorem we

are  trying  to  prove  is  that  is  lambda  maps  omega  holomorphic  holomorphically

isomorphic,  holomorphically on to the upper half plane in a one to one manner, which

means which is same as that of lambda from omega to upper half plane is a holomorphic

isomorphism.

And  further  and further  extends  to  the  boundary of  a  omega continuously so that

you see infinity the point at infinity the point the origin and one are mapped are mapped

onto 0 1 infinity respectively. So, this is the theorem we are trying to prove; that lambda

lambda maps see lambda is defined in the upper half plane and it takes complex values.

What you want to say is if you consider only this region, then lambda maps the interior

of this region by omega. I mean interior of this region. 

It maps the interior of this region on to the upper half plane in one to one manner, and

you know when a when a holomorphic maps one to one you know it is a holomorphic

isomorphism on to the image which is an open set. And further you can extend lambda to

the boundary of omega so that this extension is continuous. And the point at infinity 0

and 1 are mapped on to 0 1 and infinity in the target plane in lambda plane, all right. So,

this is the theorem we are trying to prove, and as it happened the proof of this theorem is

extending to few lectures because one has to do extensive computations.

So, let me recall what we did, what we done so far. So, what you what you done so far is

a  following,  what  we proved  so  far  is  that  first  thing  is  that  lambda  is  real  on  the

boundary of omega, except that points 0 and 1 ok.

So, you see what I want you to understand is lambda is already defined in analytic in

upper  half  plane.  So,  the  really  difficult  points  are  the  are  really  difficult  points  on

boundary are the points 0 and 1. So, that point is that you will have show that lambda

approach is a genuine limit, as you approach this point from within omega and we have

to similarly show that lambda approach is a genuine limit as you approach this point

from within omega. That is what you have to show all right. And you must show that this



limit is independent of the way in which you approach this point. So, long as your inside

omega. Once you do that then you can extend lambda to 0 and 1.

So, I will have to essentially show that if tau inside omega and tau, and also on the

boundary omega. And suppose tau tends to 0 I will have to show that lambda of tau goes

to 1. And if tau tends to 1, then I have to show that lambda of tau goes to infinity, but on

other hand. So, you see if you for if you do not worry these 2 points, on the rest of the

boundary lambda is  certainly  real.  If  you remember  we proved that  whenever  tau is

purely imaginary we proved lambda of tau is real, and then you see the and then you see

this line a real part of tau equal to 0 which is the imaginary axis. 

That is mapped to this line by the transformation tau going to tau plus 1, and you know

lambda of tau plus 1 is related by a functional equation in terms of lambda of tau, and the

therefore, fact that lambda tau is a real on this line will tell you that lambda of tau is also

real on this line. On this on this half line as you may think of it. And then this half line is

mapped onto this semicircle by transformation tau going to minus 1 by tau plus 1, that is

1 minus 1 by tau.

And therefore, and again lambda of 1 minus 1 by tau is can be expressed in terms of

lambda  of  tau,  because  of  you  know  functional  equation  or  recursive  formula,  and

therefore, the fact that lambda real on this line will also tell you that lambda is real on

this line. So, we have therefore, proved that lambda takes real values on this boundary

the only problems to be settled r at g what happens at 0 and 1. So, the second thing that

we proved is  we proved that  as imaginary  part  of tau goes to plus infinity, then we

proved that lambda of tau dies down to 0 in a way in way that uniform with respect to

part tau. So, let me write that down lambda of tau tends to 0 uniformly in real part of tau

if the imaginary part of tau goes to infinity ok.

So, this is what we have so far established, all right. Now what I am going to prove is

now I am going to use these functional equation, and tell you why lambda of tau as tau

tends 0 goes to 1, and why lambda of tau as tau tends to 1 goes to infinity. So, well that is

very easy to see. So, let. So, let me explain that put tau is equal to i times imaginary part

of tau. So, you see I am taking tau on the imaginary axis. So, tau is purely imaginary, all

right. And of course, imaginary part of tau which was greater than 0 I mean the upper

half plane. And then now look at let me use a functional equation.



So, you know I want to I want to calculate lambda of 0. Therefore, the obvious thing that

I do is I try to calculate lambda of 1 by i times minus 1 by i times imaginary part of tau,

and let imaginary part of tau go to infinity. That is the most obvious thing I will do. And

then I have a then I have a formula. So, if you recall from these functional equations, one

of them is lambda of minus 1 bye tau is 1 minus lambda of tau. So, you see lambda of

minus 1 by tau is 1 minus lambda of tau.

(Refer Slide Time: 11:39)

So, we have this functional equation, and what you do is in this functional equation I put

tau equal to imaginary part of tau. So, I will get lambda of if I substitute this here, I will

end up with minus 1 by I is of course, i by imaginary part of tau is equal to 1 minus

lambda times i imaginary part of tau.
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Let imaginary part of tau tend to 0 plus. Then so what you are doing is so, here letting

tau to go to you are letting tau to approach 0 along the imaginary axis, all right. So, then

you see lambda so, they then what will happens is lambda of i by imaginary part of tau

will go to infinity. And you see, but you see lambda of lambda of this will be 0, as I let

imaginary part of tau to go to 0 plus. Therefore, I will get lambda of tau to be equal to 1

all right. 

So, let me write that down clearly. So, you see limit imaginary part of tau tending to 0

plus of lambda of i by imaginary part of tau, what is this? This quantity is I should say

limit imaginary part of imaginary part of i by imaginary part of tau going to plus infinity

of lambda of i by imaginary part of tau. But this is as we have seen, this is 0.

So, this is so, this is equal to 0, all right. Uniformly in the real part of tau of course, in

case real part of tau is 0, because we are in the imaginary axis. On the other hand, you

should take on this side the limit as imaginary part of tau tends to 0 plus of 1 minus

lambda times i imaginary part of tau. So, you see this has to be 0, all right. So, what it

tells  you is  that.  So,  this  tells  you that  lambda of  tau tends  to 1 as if  tau is  purely

imaginary, and the imaginary part of tau tends to 0 plus.

So, the moral of the story is; that you know if I let me draw the diagram again here. So,

you see so, here is mine here is my region. So, as I approach along this line lambda

approach is 1, that is what I told. As I come along this line lambda approach is one. And



notice that so, notice that if you approach 0 by you know any sequence of points inside

omega, this sequence of points whether it is a discrete sequence or even if you approach

continuously,  in  any case  because  it  is  being  caught  between  portion  of  arc  of  this

semicircle and this and the imaginary axis.

It has to come infinitesimally close to the imaginary axis, and in the upper half plane

lambda is of course, analytic. So, it is continuous therefore, what we should tell you is

that. So, long as your within omega or on the boundary of the omega. If you approach, if

you let tau to approach 0, then lambda will take the value 1. So, this tells you that at 0

you can there is a well-defined limit for lambda and that is one.

So, hence limit tau tends to 0 tau in omega. So, I should let me put tau in omega closure.

So, I will include the boundary also. Lambda tau is actually 1. So, that settles that settles

the fact that lambda maps 0 to 1, all right. Then again so, then similar trick will tell you

that lambda will  send one to infinity. So, let  us prove that for that you make use of

another you know, you make use of another functional equation.

So, what I do is I consider. So now, what I will do is that; I am I will consider so, you see

here I considered tau on this line. Now let me consider tau on this line, all right.
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So, what you do is put tau equal to put tau is equal to 1 plus i time imaginary part of tau.

That is constraint tau to be in the upper half plane with real part of tau equal to 1, all

right. Put this.

And am trying to show that you see a letting tau to tend to 1 along this line is the same as

trying to let imaginary part of tau to tends 0. And I am trying to calculate what is lambda

of tau. So, you see lambda of tau will be just lambda of tau 1 plus i times imaginary part

of tau, but then there is a recursion formula, which says that there is a functional formula

which is a lambda tau plus 1 is a lambda tau by lambda tau minus 1.

So, this will be lambda of I time imaginary part of tau by lambda of i time imaginary part

of  tau minus 1.  This  is  what,  this  is  because of the functional  equation that  lambda

satisfies. Lambda tau lambda 1 plus tau is lambda tau minus lambda tau minus 1 I am

using that. And now you see therefore, you see if I take limit as the imaginary part of tau

tends to 0 plus, then this is same as taking limit as the this limit is same as taking the

limit as tau tends to 1. These 2 are one and the same, and of course, tau is approaching

one from above from the upper half plane. And therefore, limit tau tends to 1 of lambda

of tau of course, with tau with of course, real part of tau real part of tau equal to 1 is for

this side I can take the limit as imaginary part of tau tends to 0 plus.

But  I  just  now proved that  you see if  imaginary  part  of tau tends  to  0 plus i  times

imaginary  part  of  tau  is  here,  and  lambda  approach  is  one  all  right.  Therefore,  the

numerator  approach  is  one  the  denominator  approach  is  0.  Therefore,  this  tends  to

infinity. So, this will be limit imaginary part of tau tending to 0 plus of this quantity. And

that will be 0, that will be that will be infinity that is at a point infinity. Therefore, this

arguments tells you that as I approach one along this line, lambda approach is the value

infinity. Lambda approach is value infinity, and now it is clear again, because of the fact

that lambda is analytic in the upper half plane that if I approach along any a path which

is inside omega or the boundary of omega lambda has tau tends to 1 lambda of tau will

certainly tend to infinity.

So, hence so, I have limit tau tends to 1, tau in omega bar lambda of tau is infinity. So,

what we have succeeded in proving is that certainly, you can extend lambda to the you

can extend lambda to the boundary. The lambda at 0 being define to be equal to 1 and

with lambda one define defined is equal to the point at infinity, all right. You can extend



lambda  right.  And  we  must  always  remember  that  since  we  are  since  omega  is  an

unbounded region, when we take the boundary of omega the point at infinity also has to

be  taken into  a  count.  And already  taken  into  account  when we prove  that  literally

lambda of infinity is 0 is defined as 0. This tells you that you can define lambda of the

point at infinity as 0, all right. So, essentially when we thought we are drawing diagrams

on the finite part of the plane, both in the tau plane and in the image plane you must

always remember the point at infinity, all right. So, well so far so good, here let me draw

the diagram once more.
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So, you see you have so, here is omega. So, let me look at let me preliminarily draw this

diagram. Let me take omega. So, let me write this is lambda equal to lambda of tau.

So, what happens is like I get. So, you see this is the tau plane, and then I get the lambda

plane, I get the lambda plane all right. And I know that here lambda at approach is 0, as I

as I go higher and higher above, then I am making imaginary part of tau as sufficiently

large, then you know lambda approach is 0. So, the point at infinity is being mapped to

this point at 0. Then so, this is lambda of 0 this is lambda of infinity right, then if I come

down along this line from the point at infinity.

If I come down along this line, then as lambda as tau approach is 0 lambda approach is

the value 1. So, what happens is that this thing by continuity you know, and you know

lambda is real on this. So, what you will trace is that you will trace, you will trace the



portion of this of the real axis, and you reach a point 1 which is actually lambda of 0 and

then and from here if I continue moving along the circle. So, you see let me draw the let

me draw the orientation. So, you see now if I continue along this semicircular path arc

and come to this point, which is 1 lambda of one goes to infinity. So, what happens is

that you know. So, you know as I trace this it is going all the way it is going to go all the

way to infinity is going all the way to the point at infinity. 

(Refer Slide Time: 25:05)

So, the information we have being able to gather is only this much.

We will have to do some computations, to really trace out the image of this region, but

what we will do is that we will try to trace out by we will try to trace out the image of

this closed path. By taking this line segment and assuming that this y intercept is quite

large, you assume imaginary part of tau is large enough, all right. And then you one

would like to draw a picture of the how the image of this restricted region, this closed

bounded  region,  how  does  it  look  in  lambda  plane  that  is  what  we  would  like  to

understand, all right. So, what I wanted to understand is that this. So, this is the and

actually  trying to understand that will  give you an idea of it  will  literally  prove this

theorem, we will we will prove the theorem in trying to understand this mapping.

So, let me first explain few things. So, what I will do is so, for that the first thing that

need is I need to make an estimation, all right. So, this estimation has got to do with



again with trying to expand lambda in terms of a Fourier expansion. Mainly you will you

will have to involve sins and cosines of multiples of tau half integral of multiples of tau.

So, let me recall so, we will to so let me do the following thing. Let me give some names

to these let me give some names to these points. I will call origin as o let me call this as

A. Then let me call this as B, and I will call this as C, all right. And the question is we

want, and let me put lambda omega above. Let me put omega above, and what we want

to know is we want to trace to trace the image of this this curve. O A B C in the lambda

plane. See this is what we want to do.

In fact, and why do we want to do that because if you do that it will explain to you why

lambda is a 1 to 1 holomorphic mapping. Which takes every value in the upper half plane

alright?

So, we want to do this. For this we will need a, we will need the following computation a

limit as imaginary part of tau tends to plus infinity of lambda of tau is lambda tau by e

power i pi tau this equal to 16. We will need this computation all right. So, see the see the

point is following, the point is that you know that as imaginary part of tau tends to plus

infinity, you know lambda of tau tends to you know lambda of tau tends to 0 right. As

imaginary  part  of  tau tends  to  plus infinity  one is  the lambda of tau tends  to  0.  As

imaginary part of tau tends to plus infinity, one also know that e power i pi tau that will

also tend to well e power i pi tau is going to be what it will one that also go to 0. If the

imaginary part of the tau goes to infinity it will go to 0 right.

So, the point is because e power i pi tau will be if you write tau as x plus i y, all right.

This will be e power i pi into x plus i y. So, the it will be e power i pi x which will be

modulus 1 into e power i pi into i y will be e power minus pi y, and if you let y to tend to

infinity e power minus pi y is going to go to 0. So, both these cells are going to be 0. The

point is this it what this formula says is that lambda goes to 0, you know in such see it

goes to 0 in a in this way this rather funny way. And we have you have this number 16

timing up. And I need this to get hold of that to trace the image of the this there, I need

this estimate.

So, let us have some fun try to prove this so, recall. So, for the proof of this, we have we

will have prove this.
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So, let me recall something. You can you may recall that lambda of tau is actually e 3 of

tau minus e 2 of tau by e 1 of tau minus e 2 of tau.  And this  turned out to  be the

following expression the we know we arrived at this in an earlier lecture by looking at

the infinite expansion for pi by sine pi is z the whole square, alright.

So, this is going to be so, it is going to be summation n equal to minus infinity to infinity

pi square over cos square pi n minus half tau minus pi squared over sine squared pi n

minus half tau. This is there this is what e 3 minus e 2 turned out to be. And e 1 minus e

2 turned out to be sigma n equal to minus infinity to infinity pi squared by cos squared pi

n tau minus pi squared by sine square pi n minus half tau.

So. In fact, this is how we proved that as imaginary part of tau goes to plus infinity, you

see the numerator goes to 0, and the denominator will go to pi squared. Because only the

n equal to 0 term will survive, all right. Because all the moduli of all the denominator

they will  all  go  to  infinity. So,  long as  n  is  involved.  So,  the  numerator  goes  to  0,

denominator goes to pi squared. So, this whole expression is run out of therefore, go to 0.

And  this  convergence  was  uniform in  real  part  of  tau,  because  these  series  are  all

uniformly convergent.

So now you see,  now let  us  compute  the  following  thing.  I  want  to  compute  what

happens to lambda t by e power i pi t as imaginary part of tau goes to plus infinity. But

you see the as imaginary part of tau goes to plus infinity, the you see I am just comparing



the orders to which these 2 vanish at infinity. And I am saying that there ratio to each

goes to each vanishes at infinity, but the ratio is finite. And that is that what is fixed.

So, but you see the vanishing of lambda tau is essentially due to the vanishing of the

numerator. So, what I will do is let me compute the limit as imaginary part of tau tends to

infinity of the numerator divided by e power i pi tau. Because any way we know that the

limit as the imaginary part of tau tends to plus infinity of the denominator is pi squared.

Because that is contribution you get from term n equal to 0, corresponding to this term

which is only term that will not involve n when I put n equal to 0 right.

So, yeah so, limit so, let us calculate e 3 of tau minus n e 2 of tau over e power i pi 2, let

me calculate this. So, this is going to be well I am going to get sigma n equal to minus

infinity to infinity maybe I can maybe it will help to remove a pi squared outside all

right. And then you know I have used the usual formula that cos theta is you know e

power i theta plus e power minus i theta by 2 and sine theta e power i theta minus e

power minus i theta by 2 i.

So, I use that to rewrite these in terms of e power i pi n minus half tau and e power i pi

so, the numerator in terms of e power i by n minus 1. So, what I will get so, I will have

an e power the. So, there is an e power i pi tau outside, there is an e power I tau outside,

right. And I have pull the pi square outside I get. So, the first time I get is 1 by you know

e power i pi n minus half tau plus e power minus i pi n minus half tau the whole squared

and I will get 4 numerator plus. So, then I will get here I will get e power i pi n minus

half tau minus e power minus i pi n minus half tau. And I will get squared. And you see

there is a 2 I squared and the denominator will go to the numerator that will become a

minus 4. Because there is a already minus. So, it becomes plus 4. So, this is what I get.

Now, what am going to do is am going to write this e power i pi tau, as e power i pi by 2

tau that is e power i pi tau by 2 the whole square and push into inside I am going to push

it inside the squares of the denominators.
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So, that will lead to the following. So, e 3 tau minus e 2 of tau divided by e power i pi tau

will be I am going to push this e power i pi tau inside, and I am going to when I push it

inside it shows up as e power i pi tau by 2 alright.

Hence then what I will get is I will get pi squared sigma n equal to minus infinity to

infinity I will get 4 by so. In fact, I think I can get the 4 out, as well right. And I will get

1 by. So, you see if I add an e power i pi tau by 2 then so, what I will get is a I will get an

I will get e power i pi. So, I will get an e power i pi tau by. So, so this this half tau is

going to go away. 

So, I am going to just get e power i pi n tau all right, here because, I have an e power i pi

minus half tau that is going to cancel with e power i pi half tau all right. And here I am

going to get minus e power minus i pi. So, you see it is minus of minus half tau it is a

plus half tau and another plus half tau. So, I am going to end up with n minus 1 times tau,

this is what I get right. And then there is a plus here, this is what I get all right. And the

second term will be same kind of term 1 by I will get here again I will lose this half tau.

So, I will get e power i pi n tau plus and here, I will this minus half it becomes minus 1.

So, I will get minus e power i pi n minus 1 times tau is the whole square this is what I am

going to get.

If I push this 1 by e power i pi tau inside this square all right. And you see now you see

that if I let the imaginary part of tau to go to infinity, the only terms that will survive are



going to be the terms in which no argument appears in the power. So, you see only if I

the only terms that will survive is the terms corresponds to n equal to 0, and n equal to 1

if I take a value n different from a 0, and 1 then all those terms are going to go to 0. So,

you see if we let imaginary part of tau to tend to plus infinity the only terms that survive

are those for n equal to 0 and n equal to 1. These are the only terms that will survive. So,

long as n is not 0 or 1 each of those terms is going to be a 0 all right.

We get only a contribution  if  you take the limit  as imaginary part  of tau tends  plus

infinity, you are all going to get only 2 terms 2 finite one 0 terms. And what will you get?

You see we will get limit imaginary part of tau tends to plus infinity of e 3 tau minus e 2

tau by e power i pi tau, what you will get? See if I put n equal top 0, I this this will

become 1. And the I will get I get e power i pi tau, and e power i pi tau is going go to 0,

as imaginary part of tau goes to infinity. So, essentially, I am going get 1. And similarly,

for this also when I put n equal to 0 I will get 1. So, I will get 2 into 4 pi squared, which

is 8 pi squared, alright?

And then when I put n equal to 1, the reverse is going to happen. When I put n equal to 1

you see this will become e power i pi tau, this also become e power i pi tau that is going

go to 0, and this is going to become when I put n equal to 1 this is going to become 1. So,

again I will get one here I will get one here, I will get another 8-pi squared plus 8 pi

squared. So, I will get 16 pi square.

Now, combine this with the fact that as imaginary part of tau goes to plus infinity e 1 tau

minus e 2 tau goes to pi square. Because here this will go the only contribution you will

get as I told you was from the term n equal to 0, and in that case, we will get a pi square

alright.
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So, this  will  tell  you that  the limit  as imaginary part  of tau tends to plus infinity of

lambda of tau by e power i pi tau is 60. So, you that is how you get that estimate. So, this

this estimate is very, very important right. Now having done that I try to go and trace the

image of trace the image of this there. So, that again involves a couple of simplifications.


