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So, let me try to again give a you know brief revision of what you have been doing

because since the things we are trying to prove are deep results and you cannot prove

them in a single lecture. What we are trying to do is we are trying to take the upper half

plane modulo the unimodular group and we are trying to show that the natural Riemann

surface structure on that  is  nothing but the complex plane with the natural  Riemann

surface structure on it.

So, this is a rather deep result and, so it will help if I at this point of time try to give a

summary of what we have done and what we are going to do. 
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So, you see if you recall we had U the upper half plane, namely the set of all tau in C

such that in mathematic part of tau it is positive. And then if you start with tau in upper

half plane then you have the corresponding lattice L tau which is generated by which is

which consists of integer multiples of I mean integer linear combinations of 1 and tau

that is it is the Z sub module of C generated by 1 and tau.

So, it is of the form n plus m tau where n and m are integers and then you know that we

get the torus associated to this lattice T sub tau this is just complex numbers modulo L

tau and this is you know that this is the quotient of C by L tau. And you know that this

has universal cover C and the covering map is just the natural map from C 2 this quotient

and you know of course, that the fundamental group of this can be identified with L tau

and  it  can  also  be  thought  of  as  the  Mobius  transformations  that  I  have  given  by

translations by elements of L tau.

And then you also know that you see the if you look at the various tori T sub as tau

change tau varies over U if you take the isomorphism classes holomorphic isomorphic

classes then this is bijective to U the upper half plane modulo PSL 2 Z. Namely, tau the

tori  corresponding  to  tau  1  and  tau  2  are  holomorphically  isomorphic  which  means

isomorphic as Riemann surfaces if and only if tau 1 and tau 2 are in the same orbit for

the action of the unimodular group PSL 2 Z on the upper half plane. And then of course,

we have also seen that U mod PSL 2 Z is a Riemann surface is naturally is a Riemann



surface it is naturally a Riemann surface, so that the natural map the natural map U 2

which is just the quotient map is holomorphic.

So, this is a natural quotient map which sense any tau in the upper half plane to the

isomorphism class of the complex torus defined by tau which the isomorphism class I

denote it with a square bracket. And of course, we are trying to show that this Riemann

surface U mod PSL 2 Z is isomorphic to C. So, we have to find a holomorphic map

which is defined on this and which is whose image is all of the complex numbers and

which is also injective. So, you know you have to find the bijective holomorphic map

from this to C and that will give you automatically, that will be automatically a bijective

biholomorphic map.
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So, the claim is claim is, so let me write this here. So, what we are trying to show is well.

So, can save space and draw the line here the claim or theorem is that there exist  a

holomorphic isomorphism from U mod PSL 2 Z to the complex numbers this is  the

theorem this is what we are trying to show. So, theorem is you want to show that this

Riemann surface is none other than C. And so, what does it mean? It means, given such a

see the existence of such a J defines a map holomorphic PSL 2 Z invariant map J tilde so

that the following diagrams commutes.

So, you see you have this quotient from U to U mod PSL 2 Z, U mod PSL 2 Z is just the

set of orbits of PSL 2 Z in U and of course, each orbit corresponds to the a holomorphic



isomorphism class  of  tori  alright.  And see  suppose you have  this  J  here  which  is  a

holomorphic isomorphism on to C then what happens is that you get this J tilde above

which is just this followed by this. So, you see well if I call this, if you want to call this

as projection pi then J tilde is just first apply pi then apply J that is what it means to say

that this diagram completes and that is why I put this circular arrow here.

So, the point is we will have to first find a map J tilde we have to find a map J tilde and

this J tilde has to be constant on the orbits of PSL 2 Z. So, that it goes down to define the

map J. So, in other words what you are trying to do is we are trying to find a function on

the a holomorphic function on the upper half plane which is whose image is all of C

whose image is all of C and which is invariant for the action of PSL 2 Z. And such I have

told you that you know functions which are invariant under the action of the unimodular

group or a subgroup of the unimodular group are called modular functions in general if

they  are  holomorphic  or  meromorphic  functions  which  are  invariant  under  a  certain

group  of  Mobius  transformations  are  called  automorphic  functions  and  those

automorphic functions which are invariant under the unimodular group or a sub group of

the unimodular group are called a modular functions.

So, the moral of the story is that if you want to get hold of J you will have to construct a

modular function on U. So, you have to construct a holomorphic function on U which is

invariant for the action of the group PSL 2 unimodular group PSL 2 Z. So, you know

this, so in fact, what is this J it associates to every orbit of PSL 2 Z a unique complex

number. So, in other words, but you know orbits of PSL 2 Z are precisely isomorphism

classes of a complex tori.

So, you are trying to find a complex number which associated to any complex torus such

that the complex number depends only on the isomorphism class of that complex torus.

So, whenever you find a quantity which is dependent only on the isomorphism class that

that quantity is called an invariant because it depends only on the isomorphism class it is

called an invariant. So, what you are trying to do is you are trying to find the invariants

for complex tori.

So, constructing this modular function J get trying to get hold of a modular function J

tilde is actually it actually translates to finding invariants for complex tori. So, you see if

I start with a, if I start with the point tau in of the upper half plane J tilde of tau has to be



something that depends only on the isomorphism class of the complex storage defined by

tau. So, in other words it has to depend on the geometry of T tau as tau changes.

So, that is the reason one hopes that you know one looks at T tau and tries to you know

construct some function of tau which will behave in this way. So, that lead to us try to

look at functions the possible holomorphic functions on T tau, but then you know you

know that T tau is compact therefore, there are no global holomorphic functions. So, the

only thing that you can expect, are meromorphic functions and then you we argued that

the simplest such meromorphic functions is given by the Weierstrass p function.

So, for tau in the upper half plane we have the meromorphic function the Weierstrass phi

function phi tau of Z we defined the and this is well it is given by a series 1 by Z square

plus summation over omega in the lattice omega not equal to 0 of 1 by Z minus omega

the whole square minus 1 by omega square we defined this Weierstrass phi function and

this  function,  this  phi  function,  so  how  was  this  phi  function  it  was.  So,  from the

complex from the complex plane minus minus the lattice 2 the complex plane this phi

function this phi function turned out to be a holomorphic function with a double pole at

each point of the lattice with sum of residues 0. And the singular part at a point omega of

the lattice consisted of only 1 by Z minus omega the whole square alright.

And then this function, you see this function goes down to the torus minus you see the

image of this whole lattice in the torus will be a single point on the torus. So, let me call

that as pi sub tau of L of tau that is the single point and you get you get a meromorphic

function on the torus minus of single point and these are simplest meromorphic function

that you can, maybe I can call this as phi tau hat and well this is the. So, what is a, this

map is just the natural projection. So, this is a sitting inside C and this is sitting inside T

tau and this is the natural map this is the natural quotient map pi sub tau which has which

is which is a universal cover and.

So, the phi function is the simplest kind of function you can get on the torus and then of

course, there is another way of writing it since every point of that the lattice is a pole I

can extend this function to have the value infinity there and I can define, but then I have

to change the target to the Riemann’s sphere C n in infinity I have to add the point at

infinity.
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So, another way of writing this is well I can also write it as you know I can also write it

like this C 2 C on a infinity this is the if this is a Riemann sphere which the natural

structure of Riemann surface and then I can write this as phi sub tau here and there is a

holomorphic function and that goes down to the torus and that gives you well phi sub tau

hat. So, I can also write it like this.

So, the point is either if you write, if you want to write the meromorphic function as a

holomorphic  function  you  throughout  the  poles  or  if  you  want  to  write  it  as  a

holomorphic function you write it as holomorphic function into the Riemann’s sphere

you include the point  at  a  infinity. So,  in other  words this  defining the value of the

function to be infinity at  a pole continues to make it meromorphic map continues to

make it  a  holomorphic map in the neighborhood of  that  pole  provided you take the

complex structure the natural Riemann surface structure on the Riemann’s sphere.

So, well, then what we did was. So, the aim is of course, you know to cook up for tau as

tau varies a certain complex number. So, it is a variation of phi sub tau as tau varies that

is a important and, what we did was well we found that this Weierstrass phi function

satisfies a natural differential equation. So, we have, so maybe I will. So, let me write it

here phi tau satisfies the differential equation well it was I guess phi prime tau square of

Z is equal to 4 e tau of Z q minus g 2 p tau of Z minus g 3 where g 2 and g 3 where

certain functions of tau they were certain summations  over this  lattice.  And then we



factorize this as 4 times we factorize the polynomial on the right as into 3 linear factors

we wrote it as phi tau of e Z minus e 1 into phi tau of e Z minus e 2 into well into phi tau

of e Z minus e 3.

We factorize it like this and then we and then we found the 0s of phi prime and the 0s

turned  out  to  be  the  0s  in  the  fundamental  parallelogram define  by  tau  namely  the

parallelogram that consist of vertices 0 1 1 plus tau and tau. We found that essentially we

have three 0s, three distinct 0s and those 0s were at half tau by 2 and 1 plus tau by 2 and

we set e 1 of tau to be the value of p tau at half e 2 of tau to be the value of phi tau at tau

by 2 and e 3 of tau the value of phi tau at 1 plus tau by 2 this is what we did and. So, then

we constructed  a  partially  modular  function  a  modular  function  lambda of  weight  2

namely  it  is  not  modular  for  the  fill  modular  group,  but  it  is  modular  only  for  the

congruence mod 2 sub group.

So, we defined lambda, lambda the following so the lambda was defined from the upper

half plane into the context numbers. So, lambda of tau was just e 3 tau minus e 2 of tau

by e 1 tau minus e 2 of tau and well maybe I can draw a line here, I can draw one more

here and we were studying the we notice that lambda is a holomorphic function and it

never takes the values 0 and 1.
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So, lambda holomorphic and not equal to 0 1 on the upper half plane and in fact, we

proved  that  lambda  is  invariant  under  the  congruence  mod 2  subgroup of  PSL 2  Z



namely PSL 2 Z subscript 2, this consist of all those transformations in PSL 2 Z which

have  representative  matrices  which  when  you  read  the  coefficients  mod  2  you  get

identity matrix 2 by 2 identity matrix.

So, of course, our aim is this is only a normal sub group and we want in fact, what we are

looking for here is a function which is in varying around to the whole modular group. So,

how to extend this function so for that we had to study the mapping properties of lambda

alright and what were the mapping properties in fact, we proved that, let me draw let me

draw a small diagram here. So, this is e. So, this is the complex, this is the tau plane and

this is real axis this is the imaginary axis this is the origin and this is the line passing

vertical line passing through 1 this is the vertical line passing through minus 1. So, this is

real part of tau equal to 1, this is real part of tau equal to minus 1, this is real part of tau

equal to 0.

And then what we did was we drew we drew a region like this we took a region like this

omega alright and this region was the interior of it is a interior which is bounded by this

half line this half line and this semi circle which is centered at half and radius half and of

course,  what  we  proved  was  lambda,  lambda  from  omega  to  U  is  a  holomorphic

isomorphism, isomorphism. So, lambda maps this  region omega on to U and let  me

recollect a few more facts in fact, what we did was well you know if you draw a segment

like this if you draw a line segment like this. And then if you draw a circle like a circle

like this with center on you know the imaginary axis and well another symmetric circle

here semicircle rather, and well if you took you know this contour namely the contour

that I start along this line then I come down like this then I go by this arc then I go by

this arc then I go by this arc of the circle and I go back.

Then how does lambda map this on to the lambda plane. So, what we proved was that

you see well if I take this as lambda then in the lambda plane what happens. So, this is

the lambda plane what happened was well the fact is that lambda at infinity takes the

value  0.  So,  and  lambda  at  0  takes  the  value  1  lambda  0  is  1.  So,  let  me  write  it

somewhere here and lambda at 1 takes the value infinity, lambda 1 is infinity the point at

infinity and see if you take the image of this contour what you would get is you see. So,

the there is a point 0 and then there is a point 1.  So,  you will  end up with a small

semicircular region here semicircular arc here nearly semicircular arc and then, you will

get the semicircular arc then you will get a segment on the real axis then you will get



another semicircular arc centered at 1 and then it goes on like this at up to some point

and then you get a large semicircular arc like this.

So, let me draw this properly. So, the image of the maybe I will draw this a little bigger.

So, that I can do some shading if I want it want to do. So, I will draw it a little bit bigger.

So, you see it is like this. So, the image of that contour the image of this contour here this

contour  is  exactly  that  roughly  and this  shaded region which  you can  think  of  as  a

neighborhood of infinity of the point at infinity as you keep increasing the height of this

segment that is mapped on to a neighborhood of 0 so in fact, So, if I call this as region as

1 then this the interior of this semicircular roughly is the image of 1. So, this is lambda of

the region 1.

And if I take this shaded region which is it is neighborhood of 0 you know lambda at 0 is

1. So, this goes to this shaded region. So, this is lambda of 2, where 2 is this shaded

region here.  So,  you see I  the sheet  the region is  the region inside omega.  So, it  is

actually the intersection of this semicircle with omega alright. And then there is another

there is another region here which if you call it as 3 then this is a neighborhood of one,

but lambda goes infinity at 1. So, this is precisely what is going to be the exterior of this.

So, you see, I will have to shade.

So, this is this is the lambda of 3. So, this is how the mapping lambda behaves and in

fact,  therefore,  as you as you keep increasing the height  of these this  segment  these

shaded  regions  becomes  smaller  and  smaller  and  therefore,  these  two  semicircles

semicircular regions shrink completely and this circle becomes large enough to cover the

whole upper half plane. And in this way lambda takes all values in the upper half plane

and in fact, we can see that it takes each value once because the winding number of this

curve for any point in the upper half plane if I take this segment large enough is 1.

So,  this  tells  you that  lambda  maps  omega  1  1  on  to  you and  it  is  a  holomorphic

therefore, it is also holomorphic. So, it is a holomorphic isomorphism, but in fact, what

you also  get  is  that,  you get  lambda  see  if  you also  take  the;  well  if  you take  the

reflection of omega by the measuring axis, you get another you get another region that is

omega prime. So, let me do the following thing let me call this as. So, this was called 2

right. So, maybe I will this as 2 here let me label it here.



So, that is also this region omega prime. So, that is this region omega prime which is just

the reflection of the region omega by the imaginary axis and the fact is lambda takes

omega prime isomorphically on to minus U and by minus U I mean the lower half plane,

so I maybe I will call it as let it be as it is the lower half plane half plane. And you see

one way to understand this is as follows if you have not seen it is pretty easy you make

use of the fact becomes lambda of tau if you remember we you know to get these kind of

picture we had to make estimates of see in fact, how did we get lambda of infinity is 0,

lambda of 0 is 1, lambda of 1 is infinity we got all these things by trying to uh look at

you know a kind of Fourier series of lambda all right and in fact, trying to well I think I

accidently erased this, let me write it properly.

So in fact, we expanded these two terms in terms of you know sins and cosines and for

that we made you use of these definition. And the definitions of phi function and in fact,

what we got is well if you remember what we got was a following it was, it was sigma n

equal to minus infinity to infinity I think it was secant square pi secant squared pi n

minus half tau minus cosecant squared pi n minus half tau divided by well, summation

another summation of the same type sigma from minus infinity to infinity this was I

think secant square pi secant squared by n tau minus cosecant square the same term as in

the numerator. So, this was the expression we got for lambda of tau and the way you

have to understand it is that the series in the numerator and in the denominator they I

mean  they  converge  uniformly  on  compact  subsets  and  in  fact,  so  this  was  the

fundamental importance to study the behavior of lambda at infinity.

And now you can see that  you know if  you have well  if  you have see,  if  you take

suppose this is the tau plane I am drawing let me draw another diagram and you know

well this is 1 if I take. So, this is omega if I take a tau in omega then you see its reflection

will be tau bar reflection about the real axis and the reflection of that about the origin

will be the reflection of tau about the imaginary axis. So, this will be minus tau bar and

that is what is going to lie in the minus tau bar that is what is going to lie in the other

region omega prime and well.  So, I need to draw a line like this so that you do not

confuse these two pictures and therefore, you see you see if I calculate lambda of minus.

If I replace tau by minus tau bar here first of all if I replace tau by minus tau bar you will

see that replacing tau by minus 2 does not do any harm because there is these are all

squares of the corresponding trigonometric functions and then replacing tau by bar you



can  pull  the  bar  out  because  all  these  functions  have  real  quotients  in  their  series

expansions.

So, the moral of the story is this formula actually tells you that lambda of minus tau bar

is actually lambda tau whole bar. So, therefore, it is clear that you know if lambda takes

omega holomorphically isomorphically on to U, then it is going to take omega prime

holomorphically isomorphically onto the lower half plane minus U. So, you get this from

that. And then we also had a good boundary behavior of this of lambda.
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In fact, what we found was that lambda of lambda from if you include the boundary, if

you include the boundary then you the results is well I will give the whole complex plane

except for.

So, let me write it like this lambda of omega bar union omega prime that turns out to be a

mapped to the whole Riemann’s sphere minus 0 this will be C union infinity minus the

origin this is what you will have because you see the point at infinity as you move from

the point at infinity to 0 lambda values move from 0 to 1. And then as you move from 0

to 1 lambda values move from 1 to infinity. So, you see you trace from 0 to 1 to infinity

the point at infinity and then you come back and then come back all the way back to 0 as

you move here from 1 to infinity then lambda values move back from infinity to 0.



So, what happens is the whole you get the whole real line the only thing that you do not

get is the, I get the value to get the value 0 I need the point at infinity, but otherwise I get

every other value alright. So, and in fact, lambda of this so in fact, let me put equal to

here and then lambda of well if I include the point at infinity, then I will get the whole I

get C union of infinity and lambda is the function lambda is continuous and monotonic

on the boundary of omega.

So, well now all the whole point of doing all this was to use lambda and it is mapping

properties to cook up a function on the upper half plane which is modular that is which is

invariant for the whole unimodular group. Namely, a functions such as J tilde,  I will

define now I will tell you have to define J tilde using this lambda that was that is, that

was the purpose of getting hold of this lambda and this the mapping properties of lambda

will also be used later on as you will see.

So, you see now define J tilde from the upper half plane took the complex numbers by

well J tilde of tau is 4 by 27. So, let me write it down properly its 1 minus into 1 minus

lambda of tau plus lambda of tau square whole cube divided by lambda of tau the whole

square into 1 minus lambda of tau the whole square. So, it is a rather crazy looking I

should say rather simple looking rational function of lambda of tau. It is a polynomial in

lambda of tau in the numerator of degree 6 and in the denominator it is a polynomial of

degree 4, it is a rational function of lambda of tau. 

And the fact that this  is  doing the job also is  that that we are able to get a rational

function here is also something that makes you to believe that there is some algebra there

is some algebraic geometry going on here. And in fact, as I told you all these complex

tori are actually algebraic curves they are given by 0s of the single polynomial in to

variables and they are called elliptic curves these are cubic curves and the key to that is

this differential equation we will come back to that later and that is why this whole topic

is usually called as a moduli of elliptic curves.

That  is  also  the  reason  why  functions  on  a  torus  are  called  as  elliptic  functions,  a

functions on a torus are just functions on the C which are invariant under the lattice and

the functions invariant under a lattice are basically doubly periodic functions they are

periodic with respect to 1 as well as tau these and they are called elliptic functions. So,

the fact is actually there are elliptic curves these are actually elliptic curves and we will



see that in later lecture.  But the point is that this, the fact is that you are getting an

algebraic function namely a quotient of polynomials in lambda is suggestive of the fact

that there is some algebra going on here.

So, this is. So, we define J tilde in this form mind you J tilde is very well defined because

on the upper half plane lambda never takes the value 0 or 1. So, this denominator is

never going to vanish and you have a quotient of holomorphic functions the denominator

non vanishing, therefore, this is holomorphic on the upper half plane. So, J tilde tau is

holomorphic on U as lambda is not equal to 0 1, 0 or 1 on the upper half plane. So, this

function has no similarities its holomorphic.

And the first thing I want to say is that well of course, the there are 2 claims the first

claim is that I mean the most important claim to begin with is that this is the function we

are  looking  for  namely  this  function  is  invariant  under  the  whole  modular  group

unimodular group. So, let me write that down theorem J tilde of tau is invariant under

PSL 2 Z.

So, this is of course, this was the, so what I want meant to tell you is that all the story.

So, far was towards this end to get hold of this function which is you know invariant

under  the  under  the  whole  unimodular  group.  Now, how do  you  prove  that  this  is

invariant under the whole unimodular group? One does it again cleverly because where

because we can use the so called functional equations of lambda which express how

lambda behaves under certain transformations.
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So,  let  me  recall  that  recall  we  have  a  group  homomorphism,  we  have  a  group

homomorphism from PSL 2 Z to PSL 2 Z mod 2 Z which we call phi 2. This is just take

a  matrix,  take  a  matrix  representative  after  all  its  represented  by  a  matrix  which  is

determinant 1 and with the integer increase and you read all the entries a mod 2. Namely

with values in this smallest field Z mod 2 Z which consist of only you know 0 and 1.

And well this phi 2 is a group homomorphism and the kernel of phi 2 is precisely all

those all those elements of PSL 2 Z which consist of the congruence mod 2 sub group

because it is all those elements which when red mod 2 are give the identity matrix.

So, here you have a normal sub group which is given by PSL 2 Z sub 2 which is actually

the kernel of the homomorphism phi 2 and then if you remember that we wrote down 6

specific transformations. So, let me go back to this is from one of the earlier lectures let

me write down those transformations, here they are.

So, you know, we take these, so we take these transformations here namely given by A 1,

A 2, A 3, A 4, A 5, A 6 and this is certain set of transformations here, and A 1 is A 1

corresponds to the this is the identity matrix this is 1 0 0 1 and this corresponds to the

Mobius transformations  tau going to tau A 2 is  well,  is the matrix 1 1 0 1 and that

corresponds the Mobius transformation tau going to tau plus 1 translation by 1. A 3 is the

PSL 2  Z  element  given  by  0  minus  1  1  0  and  this  is  the  transformation  Mobius

transformation tau going to minus 1 by tau which is its own inverse. Then we have A 4



which is 1 minus 1 1 0 which is tau going to you know tau minus 1 by tau which is also 1

minus 1 by tau alright. And we have A 5 which is 1 0 1 1 that corresponds to tau going to

tau by tau plus 1 and A 6 is the element 0 1 minus 1 1 which corresponds to tau going to

1 by 1 minus tau.

So, we wrote down these 6 Mobius transformations and their corresponding matrices and

we found that  phi 2  of if  you take the images  of the 6 here,  that  gives  you all  the

elements in here phi of, let me write that here. So, phi this is surjective, if you take the

map phi 2 and restrict it to this set and then it is surjective. So, this in other words if you

read all  these matrices  mod 2 then you get all  the 6 matrices this consists of only 6

matrices you get all the 6 matrices. So, we found that lambda satisfies certain functional

equations you know this was we did this trying to understand what happens if a lambda

what is a effect of a general element of PSL 2 Z on lambda and we found that in order to

find the effect of a general element of PSL 2 Z on lambda, it is enough to look at only the

effect of these guys on lambda. And what is the effect of these guys on lambda, you get

the  6  corresponding  functional  equations  satisfied  by  lambda  and  what  are  those

equations well let me write that down. So, the corresponding equations of lambda are

lambda of A 2 of tau is just lambda tau.

So, let me write it of course, let me write let me first write A 1 of course, I am not going

to get anything because A 1 this is the identity lambda A 1 tau is lambda tau and then

lambda of A 2 of tau is well we got lambda tau by lambda tau minus 1. Then lambda of A

3 of tau which is lambda of minus 1 by tau and that turns out to be 1 minus lambda of tau

and lambda of A 4 of tau is well 1 minus 1 by, its lambda tau minus 1 by lambda tau and

lambda of A 5 of tau is that that is lambda of tau by tau plus 1 that is its 1 by lambda tau

and lambda of A 6 of tau is well lambda of A 6 of tau is 1 by 1 minus lambda tau. So, we

got these functional equations for lambda.

Now, now the point is that I quickly tell you how it is so easy now to verify that J tilde is

invariant under PSL 2 Z. 
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So, well you know let a be an element of PSL 2 Z, let a be an element of PSL 2 Z and

look at phi 2 of A. Phi 2 of A has to be here and that has to be phi 2 of 1 of this guys

because the image of these 6, give the 6 distinct images the 6 distinct 6 distinct images as

you see which are 6 distinct elements here. So, phi 2 of A is let us say phi 2 of A i for

unique i all right.

So, what does it  mean, it means see phi, you know, this  means because phi 2 is the

homomorphism this means that phi 2 of like say A i inverse is phi 2 of identity which is

identity  and this  tells  you that  A A i  inverse  is  in  the  kernel  of  phi  2  which  is  the

congruence mod 2 sub group. But then you know lambda is lambda is invariant under the

congruence mod 2 sub group therefore, you know lambda of A A i inverse tau has to be

lambda of tau this has to happen this is because lambda is invariant under a elements of

the congruence mod 2 sub group which is the kernel of homomorphism phi.

Now, so this tells you that you know if I call this. So, this will actually tell you that

lambda of A is the same as lambda of A i because you know if I call this A i inverse tau

as some tau prime then you will me that lambda of A of tau prime is lambda of A i of tau

prime. So, you will get this. Now if I calculate J tilde of A of tau ok, then you see this is

this is just if you look at the definition of J tilde I will have to just where ever I have

lambda of tau I have to put lambda of A of tau alright, but then lambda of A of tau is



same as lambda of A i of tau and therefore, I will get essentially what I will get is I will

get J tilde of A i of tau.

So, you see now, therefore, this is the same as J tilde of A i of tau now the claim is all

these J tilde of A i of tau is that are only 6 of them in fact, there were only 5 of them

because A 1 is this identity, they are all equal to J of tau. Claim J tilde of A i of tau is

simply J tilde of tau for all i. How do you verify this? You for example, you verify it for

let us say, let us verify it for A 3 for example, J tilde of if I calculate A 3 of tau will be it

will 4 by 27 into you see in this formula I will have to put lambda of A 3 of tau, but you

know lambda of A 3 of tau is 1 minus lambda tau. So, it amounts to taking that formula

and wherever I get lambda of tau I have to put I minus lambda of tau.

So, what I will get is well I will get the following I will get 1 minus 1 minus lambda of

tau plus, well 1 minus lambda tau the whole square the whole cube divided by 1 minus

lambda of tau the whole square into the other one is 1 minus 1 minus lambda of tau the

whole square. And you can readily see that the denominator is the same in the numerator

you will again get if you expand it you will simply get J of tau.

So, similarly you can verify that this is true for all the other cases it is just a matter of

direct writing down and this will easily in this way we easily see the J tilde is actually

invariant under the unimodular group.

So, with that we come to the conclusion of this lecture. Now, what I have to do in the

succeeding lectures is to show that J tilde actually is it go since it is you know invariant

under the unimodular group it goes down to a function J on you mod PSL 2 Z on the

Riemann surface U mod PSL 2 Z it gives you a holomorphic function on U mod PSL 2

Z, I will have to tell you that this function is surjective on the complex numbers and it is

also injective and if I do that then I have then I have through. I would have proved that

the Riemann surface structure on U mod PSL 2 Z is exactly the complex numbers up to

isomorphism. So, this A of tau is called, it is called the J invariant of the elliptic curve T

tau or the complex torus T tau, it is called the J invariant classically.

So, I will stop here.


