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A random variable is a measurable function, X: S → ℝ. Here, an example is given for the 

random experiment of tossing a coin. The sample space S = {head, tail}. We may define 

the random variable as X(head) = 1 and X(tail) = 0. We have shown that this is a 

measurable function and hence, a random variable. 

 

There are many examples where we can show that something is not a random variable. 

For example, let us consider another random experiment, such as rolling a die. Then our 

sample space, S₂ = {1, 2, 3, 4, 5, 6}. Now, let’s define 𝒞₂. Suppose 𝒜₂ = {∅, S₂}, which is 

a σ-field, as it includes all unions and complements of these subsets. Now, we define a 

random variable X₂: S₂ → ℝ. 

 

Let X₂(S) = 1 if S ∈ {2, 4, 6} and X₂(S) = 0 if S ∈ {1, 3, 5}. Suppose we take a Borel set, 

say B = (-∞, 1]. Then, what is X₂⁻¹(B)? To find X₂⁻¹(B), we look at all elements in S₂ 

satisfying the condition X₂(S) ≤ 1 and X₂(S) > -∞. This condition is satisfied by all 

elements, as X₂ only takes values 1 or 0. Hence, this inverse set is all of S₂, which 

belongs to 𝒜₂, so no problem. 

 

Now, if we consider the set B = (-∞, 0], it includes all elements S such that X₂(S) ≤ 0 and 

X₂(S) > -∞. Which elements satisfy this condition? Since X₂(S) = 0 for S ∈ {1, 3, 5}, the 

set is {1, 3, 5}. However, {1, 3, 5} ∉ 𝒜₂, as 𝒜₂ only contains ∅ and S₂, the σ-field we are 

considering. Therefore, {1, 3, 5} does not belong to 𝒜₂, so X₂ is not a measurable 

function and hence not a random variable. 



 

So, X₂ is not a random variable. Now, I hope you understand that a random variable must 

be a measurable function from the sample space S to the Borel σ-field ℝ, meaning it has 

to be Borel measurable. We say "Borel measurable" because we are working with ℝ and 

the Borel σ-field, considering this function with respect to the Borel σ-field. Now, let us 

discuss some numerical examples. I hope you have understood that events are defined by 

the random variable. 

 

It is defined as X = x, denoted as S such that X(S) = x. We can have various notations for 

this. For example, we can define another function, such as X₁, where x₁ ≤ x ≤ x₂. Let’s do 

a numerical example. In the experiment of tossing a fair coin three times, the sample 

space S₁ consists of 8 equally likely sample points. 

 

A fair coin means that when we say a coin is fair or unbiased, it means both heads and 

tails are equally likely; the probability of heads is ½. When you toss the coin three times, 

the possible outcomes are as follows: if you toss once, it will be heads or tails. The 

second toss can also be heads or tails, and the third toss can also be heads or tails. Your 

possible outputs for three tosses will look like this: 

 

{H, H, H}, {H, H, T}, {H, T, H}, {H, T, T}, {T, H, H}, {T, H, T}, {T, T, H}, {T, T, T}. 

 

So, there are a total of 8 observations, or sample points, for this random experiment. 

Now, if X is the random variable giving the number of heads obtained, we can evaluate it 



based on the observations. For example, if the observation is H, H, H, the number of 

heads is 3. 

 

If the observation is H, H, T, the number of heads is 2. Similarly, if the observation is T, 

T, T, the number of heads is 0. The random variable X is defined as the number of heads 

obtained. For any point s ∈ S₁, X(s) is the number of heads obtained. So, to summarize: 

 

For the case of H, H, H, X = 3. 

 

For H, H, T, X = 2. 

 

For T, H, H, X = 2. 

 

For T, T, H, X = 1. 

 

For T, T, T, X = 0. 

 

This is how the random variable is defined. So, it can be easily shown that it is a 

measurable function. We have already discussed what a measurable function is and how 

to check it. By having a measurable function, we can define an event. An event is a 

subset of the sample space that belongs to the sigma field. 

 

This means that since X is a measurable function, the inverse of any Borel set belongs to 

the sigma field C, indicating that it is an event. When we say that X ≤ 1, it is a subset of S 

that belongs to C, making it an event as well. Whenever it is an event, we can define the 

probability of that event. This allows us to talk about the probability of X = 1 or the 

probability of X ≤ 1. In general, we can also discuss the probability of X ≤ x because it is 

an event. 

 

Now, if X is the random variable giving the number of heads obtained, we want to find 

the probability that X = 2 and the probability that X < 2. First, we need to understand 



what X = 2 means and what X < 2 means, and then we can compute these probabilities. 

Let’s first consider X = 2. This means all s ∈ S₁ satisfy the relationship where X(s) = 2. 

So, what are the points satisfying X = 2? 

 

You can see that whenever the number of heads is actually 2, the outcomes HHT, HTH, 

and THH correspond to two heads. Any other combinations, such as HHH, would have 3 

heads, so they do not satisfy this relationship. Other cases like H, T, T have only one 

head, and T, T, T have none. Therefore, the only combinations where the number of 

heads is 2 are HHT, HTH, THH. Since this is a fair coin, all eight outcomes in S₁ are 

equally likely. 

 

If it were not a fair coin, the probabilities would differ based on the likelihood of heads or 

tails. Therefore, since all elements in S₁ are equally likely, we can compute the 

probability that X = 2. The probability that X = 2 is calculated using the classical 

approach, assuming all outcomes are equally likely. There are a total of 8 possible 

outcomes, and X = 2 can occur in 3 different ways. Therefore, the probability is 3/8. 

 

Let A be a subset of S₁ defined by the event X = 2. Since the sample points are equally 

likely, we conclude that the probability of X = 2 is 3/8. Next, we define another set, B, as 

X < 2. This is a subset of S and belongs to the sigma field. To define this, we consider all 

s ∈ S₁ that satisfy the relationship where the random variable X(s) < 2. When we look for 

points in S₁ satisfying this condition, we find that less than 2 means we can include 0 or 

1. 

 

The range of the random variable X is {0, 1, 2, 3}. Therefore, we are interested in values 

less than 2, which means we can have either 0 or 1. The outcome corresponding to 0 is 

TTT, where X(s) = 0. For a count of 1 head, we have TTH, THT, and HTT, each yielding 

1 head. Any other outcomes will result in a number of heads greater than 1. 

 

Thus, we have 4 elements satisfying the condition, and since all points are equally likely, 

the probability of event B (X < 2) is given by the classical approach: the total possible 

outcomes is 8, and the favorable outcomes for B is 4. Therefore, the probability of B is 

4/8, which simplifies to 1/2. 



 In summary, we have discussed how the random variable is a measurable function, how 

it can be used to define events, and how we can find the probability associated with these 

events using the random variable. What is the probability? We can find it. Next, we will 

discuss the distribution function associated with a random variable. 

 

 

To understand this clearly, let’s repeat the previous example. Suppose we are conducting 

a random experiment by tossing a coin. The sample space consists of {H, T}. If we 

consider the sigma field as the power set of S, we recall that the power set contains all the 

subsets of S. Let C represent the power set, which includes {H}, {T}, S, and the null set 

∅, containing all the subsets of S. 

 

Now, we define a random variable. The random variable X is a measurable function 

mapping from S to ℝ. We can define any random variable, but let us consider the 

standard random variable where X(H) = 1 and X(T) = 0. This relates the abstract space to 

the set of real numbers, and we can also map back to this space using the random 

variable. Now, consider the set where X ≤ x. 

 

Here, x represents any real number. This set consists of all s ∈ S that satisfy X(s) ≤ x. We 

understand that the left-hand side is greater than -∞ since X maps from S to ℝ. Let’s 

examine different values of x. For instance, if x is a negative number, such as -1.5, the set 

is defined as all s such that -∞ < X(s) ≤ -1.5. 

 

Given that X(H) = 1 and X(T) = 0, none of these values satisfy this relationship, so this 

set is the null set, ∅, which is a subset of S. Now, consider if x is another value, such as 0. 

In this case, you can easily show that X ≤ 0 corresponds to a specific set, and I hope you 



understand this clearly now. You just have to find the values of s where X(s) ≤ 0. The 

only value satisfying this relationship is when X(T) = 0, which corresponds to T. 

Now, if you consider when X = 1, then X ≤ 1 includes all s ∈ S, such that X(s) ≤ 1. This 

includes all the s satisfying this condition because X(H) = 1 and X(T) = 0. So, this 

encompasses both T and H, meaning this set is equal to S. All these sets are subsets of S 

and also belong to C, where C is the power set. By taking the complement of that set or 

performing any union operation, you can show that for all x ∈ ℝ, you can identify all the 

subsets of S. 

If you can find the probability of these sets, then you can determine the probability of any 

event associated with the random phenomenon. This means that if you understand these 

values, you can find the probability of any event related to the random phenomenon. So, 

knowing this information is very important. If you know this, then we can determine the 

probability of any events associated with this random variable. We want to define it as a 

function because it is essentially a function that assigns a value based on any given x. 

 

 

This function is denoted by F. For X as a random variable, let X be a random variable. 

We usually do not specify that X is a function from S to ℝ. For simplicity, we just say X 

is a random variable, meaning it is a function from S to ℝ. Moreover, it is a measurable 

function associated with the sample space of the random phenomenon. 

Now, the distribution function F, denoted by F(x), is defined for any real number x. This 

distribution function represents the probability that X ≤ x. Sometimes, this is also known 

as the cumulative distribution function (CDF). We refer to it as cumulative because we 

are considering the probability that the random variable takes values less than or equal to 

x. For any real number x, you want to know the probability that X ∈ (-∞, x]. 



This means we are taking the probability that X < x, which applies for all x ∈ ℝ. If you 

understand that this function is the CDF, then you can determine the probability of any 

event associated with this random experiment or random phenomenon. This is the 

distribution function. Now let us discuss an example of the distribution function or 

cumulative distribution function. Let S be the sample space of a random experiment E, 

and let X be a random variable defined from S to ℝ. 

 

The distribution function, or cumulative distribution function (CDF), is a function F from 

ℝ to the interval [0, 1], defined by F(x) = P(X ≤ x) for any real number x. Let us consider 

an example: tossing a coin three times. We will find the cumulative distribution function 

associated with this random experiment. In this case, we assume the coin is unbiased or 

fair, meaning there is no specified bias in the probability of heads. The sample space S₁ 

contains eight elements: HHH, HHT, HTH, THH, HTT, THT, TTH, and TTT. 

 

The random variable X is defined by the number of heads obtained. For example, 

X(HHH) = 3, X(HHT) = 2, X(HTH) = 2, X(THH) = 2, X(HTT) = 1, X(THT) = 1, 

X(TTH) = 1, and X(TTT) = 0. Therefore, the range of X is {0, 1, 2, 3}. Now, we want to 

define and find the cumulative distribution function associated with this random variable 

X. The definition of the cumulative distribution function is F(x) = P(X ≤ x) for all real 

numbers x. We need to find the value of this function for some specific values of x. 

For example, let’s take a negative number, say -2.5. In this case, we find F(-2.5) = P(X ≤ 

-2.5). To determine this, we need to identify the event corresponding to this random 

variable. The event X ≤ -2.5 is defined as all s ∈ S₁ such that X(s) ≤ -2.5. Since X only 

takes non-negative values (0, 1, 2, or 3), there are no values in S₁ that satisfy this 

condition. 

Therefore, this event corresponds to the null set ∅. The probability of X ≤ -2.5 is 

equivalent to the probability of the null set, which is 0. For any negative real number x, 



this results in a null set because X only takes positive values. Therefore, if x < 0, the set 

X ≤ x will also be the null set, leading to a probability of 0. Thus, for this distribution 

function in this example, F(x) = P(X ≤ x) is equal to 0 if x < 0 and greater than -∞. 

 

 

We are not finding the probability over an interval; instead, we are taking a specific value 

and determining the probability of that event. Since this value is in the interval, the 

probability remains 0. Now, let us consider when x = 0. We want to find P(X ≤ 0). The 

set for this is defined as the set of s ∈ S₁ such that X(s) ≤ 0. 

For simplicity, we often omit the left-hand side notation, understanding that it implies 

greater than -∞. In this case, X takes values of 0, 1, 2, and 3, with only TTT (tail, tail, 

tail) resulting in X = 0. Thus, the probability that X ≤ 0 corresponds to the event 

containing only one point, TTT. Out of the possible eight outcomes, there is only one 

way this can occur, which is why the probability is 1/8. Now, if you take any value, 

suppose x > 0 but x < 1. 

For instance, let’s say x = 0.8. So, you want to find the probability of this event, which is 

P(X ≤ 0.8). This is nothing but the set of s ∈ S₁ such that -∞ < X(s) ≤ 0.8. You can see 

that we are not finding the probability that X = 0.8; we are finding the probability that X 

≤ 0.8. The random variable X can take values only in {0, 1, 2, 3}. 

So, for X ≤ 0.8, you only have TTT, which gives X = 0. For all other values, X will be 

greater than 0. Therefore, the probability that X ≤ 0.8 is again 1/8. So, for any small x 

such that 0 ≤ x < 1, the probability that X ≤ x, denoted as F(x), is equal to P(X ≤ x), 

which is greater than -∞. So, this is the definition of F_X(x). 



 

 

 

Whenever x ∈ (0, 1), the probability is 1/8. Note that sometimes it can be confusing when 

we say we are finding x ≥ 0 and x < 1; that is not correct. Basically, we are taking this 

small x, which is between 0 and 1, and putting it here as x ≤ small x. That is why, for any 

value you consider between 0 and 1, the probability F(x) that we are finding is 1/8. 


