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Now, we are interested in finding the probability at a specific point rather than the 

cumulative probability for values like x ≤ 1 or x ≤ 2. So, what will be the probability that 

f(x) when x = 0? This is the set of all outcomes in the sample space S1 where X(s) = 0. 

Remember, our sample space contains 8 points, and only one outcome satisfies X = 0. 

Thus, the probability of X = 0 is 1/8. 

Now, what is the probability of X = 1? This is the set of all outcomes in S1 where X(s) = 

1. Here, we are considering only the values that satisfy this exact equality, not an 

inequality. The outcomes that satisfy this are head-tail-tail, tail-head-tail, and tail-tail-

head. Since there are three such outcomes out of 8, the probability of X = 1 is 3/8. 

Next, let’s find the probability of X = 2. This corresponds to outcomes where X(s) = 2, 

meaning exactly two heads. The outcomes here are head-tail-head, tail-head-head, and 

head-head-tail. Again, we have three outcomes, so the probability of X = 2 is 3/8. 

Finally, we find the probability of X = 3. This is the set of all outcomes in S1 where X(s) 

= 3, meaning exactly three heads. Only one outcome satisfies this, which is head-head-

head. Therefore, the probability of X = 3 is 1/8. So, this is 1/8. You can see that this is 

exactly the same as the probability of X = 0, the probability of X = 1, the probability of X 

= 2, and the probability of X = 3. 



 

 

Basically, this jump actually represents the probability at a point. So, this is the 

probability of X = 1, the probability of X = 2, and the probability of X = 3. So, whenever 

you write this for discrete random variables, it has either a finite range of X containing 

only a finite number or it may be countably infinite. If it is a countably finite number, 

then the range might be something like 1, 2, 3, or any number up to m. If it is countably 

infinite, then there is a bijective correspondence to a subset of the natural numbers. 

So, you can write it as X₁, X₂, ..., Xₘ. Because there is an order, we can assume that X₁ < 

X₂ < X₃ < ... . Without loss of generality, we can assume the range looks like this. Then, 

the distribution function for discrete random variables looks like a step function. For 

example, if we consider points like x₁, x₂, ..., the distribution function is 0 for values less 

than x₁. 

At x₁, there is a step up, and it remains constant until it reaches x₂, and so forth for x₃. 

The size of each step corresponds to the probability of the random variable taking those 

specific values. For instance, the step from x₁ to x₂ reflects the probability that X = x₁. 

Similarly, the step from x₂ to x₃ represents the probability that X = x₂. There is a 

relationship between these probabilities at specific points and the cumulative distribution 

function. 

Sometimes, for convenience, we use the probability at a point instead of the cumulative 

probability. This is why we define a new function called the probability mass function for 

discrete random variables. The probability mass function, denoted as P(X), is defined by 

P(X) = P(X = x). This applies for all x ∈ ℝ, but usually, this probability will be 0 

whenever x is not in the range. There are properties of the probability mass function that 



we will learn about, and from this relationship, we can find the probability mass function 

for specific values like P(x₁) or P(x₂). 

So, now one thing to consider is that whenever you define Rₓ as x₁, x₂, ..., f(x) for x₁⁻ will 

essentially be 0 because we are considering it without loss of generality, with x < x₂. 

Therefore, f(x) for x₁⁻ - f(x) for x₁⁻₋₁ = f(x) for x₁, which is the same as the probability 

that X = x₁. Now, what is P(X = x₂) - f(x) for x₂⁻? This is essentially P(X ≤ x₂) - P(X ≤ 

x₁). So, this can be represented as P(X = x₂) - P(X ≤ x₁). 

 

 

 

From the numerical example here, f(x) for 0⁻ is 0, which is why this is coming out as 1/8; 

0⁻ is 0. Now, f(x) for 1⁻ is 1/8, which means that f(x) for 0 is also 1/8. For the discrete 

random variable case, f(x) for xₖ⁻ is equal to f(x) for xₖ⁻₋₁ whenever k > 1. Otherwise, 

when k = 1, f(x) for x₁⁻ is equal to 0. This is why the probability mass function satisfies 

the equation: P(xₖ) = f(x) for xₖ⁻ - f(x) for xₖ⁻₋₁ when k > 1. Otherwise, when k = 1, it is 

equal to f(x) for x₁. Essentially, it takes the cumulative sum. If you know the cumulative 

distribution function, you can find the probability mass function using this method. 

Now, how will we find the cumulative distribution function if the probability mass 

function, P(x), is known to us? The cumulative distribution function f(x) is the 

probability that X ≤ x. We can find the cumulative distribution function using the 

probability mass function. 

If you represent this graphically, it becomes clearer. For example, let x₁, x₂, x₃, and x₄ 

represent discrete values. The probabilities, Pₓ(x₁), Pₓ(x₂), and so forth, can be plotted, 



with values of zero for other values. For the cumulative distribution function, it starts at 

0, then takes a jump at each x value. We have already discussed that this value 

corresponds to Pₓ(x₁), Pₓ(x₂), and so on. 

Therefore, Pₓ(x₁) = f(x) for x₁, while Pₓ(x₂) = f(x) for x₂ - f(x) for x₂⁻₋₁. Let’s do a very 

simple numerical example to clarify this process. Let X be a discrete random variable 

with the range Rₓ = {-1, 0, 1}. The probability mass function, denoted as pmf, is defined 

as Pₓ(xₖ) = 1/3 whenever xₖ ∈ {-1, 0, 1}; otherwise, it is equal to 0. This establishes some 

probability distribution. Here, we did not specify any sample space; we are assuming 

there is some sample space, and X is the random variable taking these values. 

Now, we have to check whether this can serve as a valid probability mass function. To do 

that, we need to know the properties of the probability mass function, particularly that the 

sum of the probabilities must equal 1, since the probability mass function represents Pₓ(x) 

as the probability that X = x for each value of x. Now, you can see from the previous 

example that we have verified that this will always hold true because it is a probability. 

So, P(x) will always be ≤ 1 and ≥ 0. Also, P(x) will be 0 if P(x) does not equal xₖ for 

some values of k, such as k = 1, 2, and so on, because the range of X is fixed with values 

like x₁, x₂, etc. 

If X does not belong to this set—meaning it is none of the values x₁, x₂, x₃—then, for 

instance, in tossing a coin three times, we see that X takes the values 0, 1, 2, and 3. If we 

consider what happens when X equals a value outside of these, like 1.5, we analyze the 

set of all s satisfying S₁ such that X(s) = 1.5. None of the outcomes correspond to this 

because X only takes integer values: 0, 1, 2, or 3, representing the number of heads. Thus, 

it cannot be equal to 1.5 for any of the points, which leads to the conclusion that it is a 

null set. Consequently, the probability of X = 1.5 will equal the probability of the null set, 

which is 0. 

So, for any X that does not equal any of the values x₁, x₂, or xₖ, the probability will also 

equal 0. This is an important property to know. Additionally, the sum of Pₓ(x) for X = xₖ 

will equal 1. If you take this sum, you can see in this numerical example that we have the 

total values 0, 1, 2, and 3. If you calculate the sum: 1/8 + 3/8 + 3/8 + 1/8, it equals 1. 

This can be broken down: 1/8 + 3/8 = 4/8; adding another 3/8 gives 7/8; finally, adding 

1/8 totals 1. Thus, the summation of Pₓ(x) for X = 1 + the probability of X = 2 + the 

probability of X = 3 + the probability of X = 0 should equal 1. This is because it is a 



certain event. If you take the summation of the probability of X, it equals the summation 

of all xₖ. 

 

 

 

This means we are considering all the possible values that x can take, referring to the 

probability of a certain event, which is equal to 1. Now, how can we find the distribution 

function fₓ from the probability mass function? Whenever we want to find the distribution 

function from the probability mass function, we know that if x ≤ xₖ, then the probability 

of x = xₖ is given by f(xₖ) - f(xₖ₋₁). If k > 1, we use this formula; otherwise, P(x = x₁) = 

f(x₁). When you know the cumulative distribution function, you can find the probability 

mass function. 

But suppose you know the probability mass function; then how can you find the 

cumulative distribution function? Suppose Pₓ(xₖ) is known for any xₖ ∈ {x₁, x₂, ...}, which 

forms the range of x. The cumulative distribution function f(x) is defined as the 

probability that x ≤ x. Now, if you look at this graph with values x₁, x₂, x₃, etc., x can be 

anywhere. If x is the minimum value and is less than this minimum value, then the 

probability will be 0. 

For example, if x < x₁, from this numerical example, we see that the cumulative 

distribution function will equal 0 whenever x < x₁. This corresponds to a null set; when 

you consider that x < x₁, none of the values will satisfy this relationship. Therefore, it is a 

null set, and the probability will be 0. Now, if x is somewhere greater than x₁ or x₂, the 

probability exists only at a point. Other than that, the probability remains constant and 

equal to 0. 



So, this is why, whenever x ≥ x₁ and x < x₂, this value will be equal to Pₓ(x₁). Now, if x ≥ 

x₂ and x < x₃, then this value will just be cumulative; we have to add it. So, how does this 

come together? When you find the probability of x ≤ a certain value, you look at all s that 

belong to the set such that xₛ ≤ x. If x is between x₁ and x₂, and x is a discrete random 

variable taking only integer values, then this probability will just be for x₁. So, it's 

basically Pₓ(x₁). Now, if x is between x₂ and x₃, then the probability of x ≤ x will include 

the probabilities at points x₁ and x₂. 

This is how we can find the cumulative distribution function (CDF). In general, we can 

write the CDF, Fₓ(x), as the summation of Pₓ(xₖ) for all xₖ such that xₖ ≤ x. So, if x ≥ x₁, 

this holds true; otherwise, it is equal to 0, because it only counts when it crosses the 

minimum value, allowing us to add some probability. Otherwise, if x < x₁, then none of 

the values satisfy this inequality; that is why f(x) will be 0. In general, the cumulative 

distribution function can be found using the probability mass function. 

 

 

 

Let’s see this example. Suppose x is a discrete random variable with range Rₓ = {-1, 0, 

1}. The probability mass function is given by this: x₁ = -1, x₂ = 0, and x₃ = 1. In this 

notation, x₁ is the minimum value, x₂ is the next value, and x₃ is the following value. It is 

taking only a finite number of values. To qualify as a probability mass function, it must 

satisfy certain properties. 

First of all, the values must be between 0 and 1. For example, Pₓ(-1) = 1/3, Pₓ(0) = 1/3, 

and Pₓ(1) = 1/3. If you take the sum, Pₓ(-1) + Pₓ(0) + Pₓ(1), this will be 1/3 + 1/3 + 1/3, 



which equals 1. So, this is a probability mass function. Now, if we want to find the 

cumulative distribution function, Fₓ(x), it is defined as the probability that x ≤ x. 

This is equal to 0 whenever x < x₁, which is -1. So, if x < -1, the probability is 0. When x 

is between x₁ = -1 and x₂ = 0, the cumulative distribution function will be Pₓ(-1) = 1/3. 

Now, when x ≥ 0 and x < 1, the cumulative distribution function will equal Pₓ(-1) + Pₓ(0). 

Since this is a uniform random variable and all probabilities are the same, it is 1/3 + 1/3 = 

2/3. 

Finally, for x ≥ 1 and x < ∞, there are no other points. After adding the three points, 1/3 + 

1/3 + 1/3 = 1. This will be a step function. So, if you draw this function, it will be at -1, 0, 

and 1. The value starts at 0, then reaches 1/3 at x = -1, then goes to 2/3 at x = 0, and 

finally reaches 1 at x = 1. 

 

 

 

The difference between these values is 1/3 each time. This is a probability mass function 

of a random variable. The probability mass function can satisfy certain relationships, 

meaning it can be a valid probability mass function. Let us discuss another random 

variable that may also be infinite. Suppose the range of the random variable x is limited 

to {1, 2, 3}. 



 

 

This means x1 = 1, x2 = 2, and x3 = 3. Now, what is the probability mass function? Let X 

be a discrete random variable with this range. The probability mass function is given by 

P(x) = 1/4 for X = 1 and X = 2, and P(x) = 1/2 when X = 3. It is equal to 0 otherwise. In 

this case, we can see that this satisfies the criteria for a probability mass function: it is 

always between 0 and 1, and it is 0 unless it is in the defined range. 

If you sum these values, you get 1/4 + 1/4 + 1/2 = 1. Therefore, this is a valid probability 

mass function. Now, we want to find the cumulative distribution function from this 

probability mass function. F(x) is equal to the probability that x ≤ x. Similarly, we can 

find this easily. This is equal to 0 if x < 1. 

When x ≥ 1 and x < 2, we will add the probability of x = 1, which is 1/4. When x ≥ 2 and 

x < 3, we add 1/4 + 1/4 = 1/2. When x ≥ 3 and x < ∞, this probability equals 1. We can 

represent this graphically. The points are at 0, 1, 2, and 3. 

To summarize how we find the cumulative distribution function: for x < 1, it is 0; then it 

reaches 1/4 at x = 1; it adds to 1/2 at x = 2; and finally, it reaches 1 at x = 3. So, this is the 

cumulative distribution function F_X(x). This corresponds to the random variable X. 

Next, we will discuss a discrete random variable that can take on infinite values. For 

example, consider an infinite series. 

 



 

 

If you take an infinite series that is convergent, such as the summation of 1/n² from n = 1 

to ∞, we know that it converges to some number. This number may or may not be known, 

but it is actually π²/6. You can verify this. Now, we can define a probability mass 

function using this infinite series. The probability that X = xₖ can be defined as some 

constant multiplied by 1/n². 

For n = 1, 2, and so forth, this is equal to 0 otherwise. In this case, the range of this 

random variable is 1, 2, 3, and so on. So, basically, x₁ = 1, x₂ = 2, and so on. This is 

countably infinite. Suppose we consider this constant as 6/π². 

So, instead of a constant, we use 6/π² multiplied by 1/n². We want to check whether this 

is a valid probability mass function. To be a valid probability mass function, the 

probabilities must be between 0 and 1. You can see that this is always between 0 and 1, 

and it is 0 if it is outside the range. Additionally, we need to take the sum from n = 1 to ∞ 

of P(xₙ). 

This is the summation from n = 1 to ∞ of (6/π²)(1/n²). Because 6/π² is multiplied by the 

summation from n = 1 to ∞ of 1/n², and this is a convergent series that converges to π²/6, 

we find that: (6/π²) * (π²/6) = 1. Therefore, this is a valid probability mass function for a 

discrete random variable that takes on countably infinite points. You can also find the 

cumulative distribution function of this random variable. The cumulative distribution 

function F(x) can be found similarly to the previous example. 

It will be 0 if x is less than the minimum value of this range. If x is between 1 and 2, it 

will equal P(x = 1), which is 6/π². For x ≥ 2 and x < 3, it will be the sum of P(x = 1) and 

P(x = 2), which is 6/π² + 6/4π². This will continue for an infinite interval. If you draw the 



graph of the cumulative distribution function, your range will be 0, 1, 2, and so on. At 0, 

the value is 0; at 1, the value is 6/π²; and at 2, the value will be 6/4π², and so on. 

This graph will look like this; it will approach 1 asymptotically as x → ∞. So, F(x) 

converges to 1 as x approaches infinity. This is an example of a discrete random variable. 

Next, we will discuss continuous random variables and the properties of continuous 

random variables. 

 

 


