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Moments 
 

Now, we will discuss moments. We know that whenever we collect data, we often ask for 

summary statistics to understand it better, like averages and variability, including 

variance. For example, when students receive their marks, they usually ask for the 

average score to gauge how their performance compares to others. However, the average 

alone is not sufficient to understand the data comprehensively; many other measures are 

also necessary. So, when collecting data, we might have values like x₁, x₂, ..., xₙ, 

representing n data points. 

 

We assume this data comes from a specific distribution, even though we may not know 

what that distribution is. It's part of a phenomenon we want to estimate or analyze. There 

is a certain probability associated with each data point, indicating the likelihood of 

obtaining each xᵢ. If the data is discrete, we can assign probabilities to these values. Since 

we usually do not know these probabilities, we calculate the average, known as the 

sample mean. 



This is computed as (1/n) ∑ᵢ₌₁ⁿ xᵢ, where the sum of all observed values is expressed as 

(x₁ + x₂ + ... + xₙ)/n. Here, (1/n) is the multiplier for the total sum of the observed values. 

What is the (1/n) here? It seems like we are considering some kind of weight, and these 

weights are the same for n elements. If the data contains multiple observations of the 

same value, suppose x₁ occurs m₁ times, x₂ occurs m₂ times, and xₙ occurs mₙ times, then 

what will be the average? 

 

 

If you take this sum, it will include repeated values, so for x₁, it will appear as x₁ + x₁, 

repeated m₁ times, plus x₂, repeated m₂ times, and so on until xₙ, which will appear mₙ 

times. The total will be m₁ + m₂ + mₙ. So, the sample average will look like this: (m₁ * x₁ 

+ m₂ * x₂ + ... + mₙ * xₙ) / n. Now, if you express this in a different way, it is (m₁/n) * x₁ + 

(m₂/n) * x₂ + (mₙ/n) * xₙ.  

Now, what are those weights? They represent some kind of probability. For example, if 

you think of a box containing balls of different colors, say x₁ appears m₁ times and x₂ 

appears m₂ times, the probability that you pick a ball of color x₁ would be m₁/n, where n 

is the total number of balls. This is essentially p₁. So, the average we calculate here 

reflects the probability of each observation occurring. When we have unique 

observations, we usually assume all x values have the same probability. But if you know 

the exact probabilities according to the distribution, we denote these as p(xᵢ) for each 

value xᵢ. When we talk about the expected value or average in this context, we refer to it 

as the population mean. 

The population mean considers all data points and their respective probabilities. For a 

discrete distribution, the population mean is defined as the sum of each possible value xₖ 



multiplied by its probability p(xₖ), summed over all k. If k is finite, it will be a finite sum; 

if infinite, it must be absolutely summable; otherwise, the mean does not exist. That is 

how the population mean is defined. We will discuss here, in general, let x be a discrete 

random variable with a probability mass function, denoted as p(x). 

 

 

 

This applies whenever x ∈ range(x), which could be finite, such as x₁, x₂, ..., xₘ, or it 

could be countably infinite. Now, what is the mean of x? When we refer to the mean, we 

are talking about the population mean of x, which is defined as the expected value of x. 

This is denoted by E(x) and sometimes by μₓ. In some books, it may be denoted as μ'ₓ; 

this is not a derivative because there is another concept called central moments. 

Therefore, we denote it as μ'ₓ or Mₓ. The population mean is calculated as the summation 

Σ (xₖ * p(xₖ)), where k sums over all possible values of x when x is discrete. 

Now, if x is a continuous random variable, we know that the probability at a specific 

point is 0. In this case, the mean is defined analogously to the discrete case, where the 

summation is replaced by integration. Here, xₖ is multiplied by the probability density 

function, which is defined as f(x). Thus, the mean for continuous random variables is 

given by the integral ∫ from -∞ to ∞ of x * f(x) dx. This gives us the mean for continuous 

random variables. 

We will discuss some examples, so let us return to the discrete random variables we 

covered earlier. Suppose we have a discrete random variable, and let’s consider this 

example. The range is {-1, 0, 1}, with a probability mass function p(X) = 1/3 for X ∈ {-1, 

0, 1}. 



 

 

In this case, what will be the mean of this random variable? Let X be a discrete random 

variable with the probability mass function P_X(X) = 1/3 whenever X ∈ {-1, 0, 1}, and 

P_X(X) = 0 otherwise. The values of X are X₁ = -1, X₂ = 0, and X₃ = 1, which forms a 

uniform distribution because all the probabilities are the same. To find the expected value 

E(X), we use the definition, which states that E(X) = Σ (Xₖ * P_X(Xₖ)). This gives us: 

E(X) = (-1) * P_X(-1) + 0 * P_X(0) + 1 * P_X(1). 

Since P_X(-1) = 1/3, we have: 

E(X) = (-1) * (1/3) + 0 + 1 * (1/3). 

Therefore, E(X) = -1/3 + 0 + 1/3, which equals 0. The mean is 0. 

Now, let us discuss how to find the mean of a continuous random variable. Suppose X is 

a continuous random variable with the probability density function given by an example 

we discussed earlier. 



 

The function is f_X(x) = (3x²)/28 whenever x ∈ [-1, 3], and f_X(x) = 0 otherwise. To find 

the expected value E(X), we will use the definition. This means we need to evaluate the 

integral from -∞ to ∞ of x * f_X(x) dx. Since the density is 0 outside of the interval [-1, 

3], we can limit our integral to that range. Thus, we have: 

E(X) = ∫ from -1 to 3 of x * (3x²/28) dx. 

Now we calculate: 

E(X) = (3/28) * ∫ from -1 to 3 of x³ dx. 

This integral can be computed as follows: 

E(X) = (3/28) * [x⁴/4] from -1 to 3. 

Evaluating this gives: 

E(X) = (3/28) * [(3⁴/4) - ((-1)⁴/4)] = (3/28) * [(81/4) - (1/4)] = (3/28) * (80/4) = (3 * 

20)/28 = 60/28 = 15/7. 

Thus, the mean of this continuous random variable is 15/7. 

Now, let us consider two data sets, two random variables. For example, suppose we have 

a uniform random variable. We have already considered one random variable with the 

probability mass function P_X(x) = 1/3 for X ∈ {-1, 0, 1}. Let us take another similar 

type of random variable but with a different range. Here, let Y be a random variable, and 

suppose the range of Y is {-10, 0, 10}. The probability mass function P_Y(Y) = 1/3 

whenever Y ∈ {-10, 0, 10}, and P_Y(Y) = 0 otherwise. 

 



 

Note that this random variable takes different values compared to the random variable X 

we discussed earlier, which had a range of {-1, 0, 1}. Now, if we calculate the mean of 

this random variable, the expected value of Y, denoted as E(Y) or μ_Y, is defined by the 

formula: 

E(Y) = Σ (y_k * P(Y = y_k)) over k. 

Here, Y takes three values: -10, 0, and 10. So, we can compute the expected value as 

follows: 

E(Y) = (-10 * P(Y = -10)) + (0 * P(Y = 0)) + (10 * P(Y = 10)). 

Since P(Y = -10), P(Y = 0), and P(Y = 10) are all equal to 1/3, we get: 

E(Y) = (-10 * 1/3) + 0 + (10 * 1/3) = -10/3 + 0 + 10/3 = 0. 

Therefore, both random variables, X and Y, have the same mean of 0. This demonstrates 

that you can have two data sets—one with values {-1, 0, 1} and another with values {-10, 

0, 10}—that can have the same mean despite being situated differently on the number 

line. For example, one class of students might have marks that are very close to zero, 

while the other class has marks ranging from -10 to 10. 

So, the key point here is that knowing the mean of a random variable is not enough to 

understand the data. The mean gives a measure of central tendency, representing the 

average behavior of the data. However, different distributions can have the same mean, 

which may not fully capture the underlying characteristics of the data. We need to learn 

some summarized measures of data. 



In general, if we consider another concept here, it's called a function of a random 

variable. Suppose Y = g(X), where g is a function. We have already been using f for the 

density function, so let’s use g for this example. For instance, g could be sin(X) or simply 

X + 2. 

 

 

Now, if we define this function g as a mapping from ℝ to ℝ and we make X a random 

variable, we can examine how this impacts our understanding of g(X). Since X is a 

measurable function from a sample space S to ℝ, we can apply another measurable 

function g from ℝ to ℝ. When we consider the composite function g(X), for any point s in 

our sample space, X(s) will yield a real number. Thus, g(X(s)) will also be a random 

variable, denoted as Y, which is defined by g(X). Therefore, Y is a measurable function, 

as long as g is a defined function from ℝ to ℝ. 

Next, if we want to determine the distribution of Y given the distribution of X, we will 

not delve into the exact distribution of Y here. Instead, we will focus on finding the mean 

of Y through this transformation. The expected value of Y, denoted E(Y), can be defined 

in two cases: for a discrete random variable, it is the summation of y_k for all k, weighted 

by their probabilities. By definition, this expected value is 

E(Y) = Σ (y_k * P(Y = y_k)). 

Thus, the expected value of g(X) will be defined for discrete cases as 

E[g(X)] = Σ (g(X_k) * P(X = X_k)). 

For continuous cases, it is defined as 



E[g(X)] = ∫ g(X) * f_X(X) dX, 

where f_X(X) is the density function. Why define this? This is a general definition. The 

expected value of Y, which we will revisit later, will align with the definitions we 

established. We are not focusing on finding the probability mass function in the discrete 

case or the probability density function in the continuous case. 

Instead, we are establishing that when we take a transformation like Y = g(X), we can 

directly find the expected value of g(X). To illustrate this intuitively, consider an 

experiment involving flipping a coin, where the probability of heads is 0.8 and tails is 

0.2. Let’s define a random variable X such that X = 1 if heads are observed and X = 0 if 

tails are observed. In this case, the probability mass function of X is 

P(X = 1) = 0.8 and P(X = 0) = 0.2. 

Now, if we take a transformation where Y = g(X) = X + 2, we find that if X = 1, then Y = 

1 + 2 = 3, and if X = 0, then Y = 0 + 2 = 2. 

Thus, the probability that Y = 3 is the same as the probability that X = 1, which is 0.8. 

Conversely, the probability that Y = 2 corresponds to the probability that X = 0, which is 

0.2. Now, if you want to find the expected value of Y directly from the distribution of Y, 

you can see that the probability mass function of Y, P(Y = y), is based on the 

probabilities assigned to the values of Y. For example, if Y = 3, the probability is 0.8, 

which corresponds to observing heads. So, when Y = 3, it indicates that heads were 

observed. 

 

 



On the other hand, if tails are observed, Y = 2. Therefore, Y = 3 means heads were 

observed, while Y = 2 means tails were observed. So, if you want to find the expected 

values of y directly from the distribution of y, you can see that the distribution of y, 

which is the probability mass function, is defined as p(y) = 0.8 when y = 3. This 

corresponds to the probability of heads, which is 0.8. So, in this case, when y = 3, it 

means that a head has been observed, while when y = 2, it represents the tail observed. 

 

Thus, y of head is 3 and y of tail is 2. This means that when y = 3, the probability remains 

the same. Next, what will be the expected values of y? The expected value of y will be 

calculated as the summation of y_k * p(y_k). In this case, the summation involves the 

values of y_k, which are 3 and 2.  

Therefore, the calculation is as follows: E(y) = (3 * 0.8) + (2 * 0.2) = 2.4 + 0.4 = 2.8. 

Now, if you find the expected values using the formula for expected values of g(x), this is 

defined as the summation of g(x_k) * p(x_k). Here, we keep the probability mass 

function of x in consideration. The values that x can take are 0 and 1. So, we have: 

E[g(x)] = g(0) * p(x = 0) + g(1) * p(x = 1). Now, g(0) is defined as x + 2.  

Therefore, when g(0) = 0 + 2 = 2, we multiply this by the probability of x = 0, which is 

0.2. For g(1), we have: g(1) = 1 + 2 = 3. The probability p(x = 1), when x = 1 (which 

corresponds to observing a head), is 0.8. Putting this all together: E[g(x)] = (2 * 0.2) + (3 

* 0.8) = 0.4 + 2.4 = 2.8. Thus, the formula we can use here is quite effective instead of 

finding the details of the distribution. Although we are focused on finding the mean in 

this case, if we need to determine the actual distribution function of y, we will need to 

investigate the distribution function in detail. 



 We will cover this in more detail later, but for now, it is a straightforward example 

involving heads and tails. That is why it is easy to find the expected values, and we can 

verify this. 

 


