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Now, we have this general formula for expected value. The expected value of g(X) is Σ 

(g(X_k) * p(X_k)) when X is discrete, and ∫ (g(X) * f(X) dX) when X is continuous. So, 

this should be g(X) - 2 because we’re finding the expected value of g(X) with respect to 

X. That’s why it will involve integration over X. So, now, what is the advantage of 

knowing this distribution and the expected values of g(X)? 

 

For example, suppose we want to find g(X) = X^r, where r could be any positive integer. 

Then, what will be the expected value of g(X)? By definition, it’s basically just the 

expected value of X^r. So, g(X) is nothing but Σ (X_k^r * P(X = X_k)) over k when X is 

discrete, and ∫ from -∞ to +∞ of X^r * f(X) dX when X is continuous. Now, if we set 

g(X) = X^r, then the formula becomes Σ (X_k^r * P(X = X_k)) over k for discrete X, and 

∫ from -∞ to +∞ of X^r * f(X) dX when X is continuous. 

This is called the expectation of X^r, or the r-th order moment. So, we could define the r-

th order moments directly with this formula. On this slide, you can see that the r-th order 



moment has the mean and the moment itself. The n-th order moment of a random 

variable X is defined as the expectation of X^n, with Σ (X_k^n * P(X = X_k)) when X is 

discrete, and ∫ from -∞ to +∞ of X^n * f(X) dX when X is continuous. Now, I find it 

helpful to represent this with g(X) because, next, we’ll define variance. For finding 

variance, we won’t need to worry about this setup. 

So, this is the r-th order moment. We will discuss some of the r-th order moments, along 

with some numerical examples. Now, this moment is called a raw moment. There is 

another type, called a central moment. First, we define the r-th order moment around a 

point, say, point a, where a is a real number. 

 

 

The r-th order moment around a point a is defined by the expected value E[(X - a)^r]. For 

this, if we take g(x) = (x - a)^r, the general form for E[g(X)] when X is a discrete random 

variable is E[g(X)] = Σ g(x_k) * P(X = x_k). Therefore, in this case, g(x_k) = (x_k - a)^r 

* P(X = x_k). 

When X is a continuous random variable, E[g(X)] is given by the integral ∫ g(x) * f(x) dx 

from minus infinity to plus infinity. Specifically, with g(x) = (x - a)^r, this becomes E[(X 

- a)^r] = ∫ (x - a)^r * f(x) dx from minus infinity to plus infinity. This defines the r-th 

order moment, where r can take values such as 1, 2, and so on. For example, when r = 1, 

this is the first-order moment. 

If we set a = 0, the moment is called the r-th order raw moment, often denoted by μ_r' 

and is defined as E[X^r]. With a = 0, this simplifies to X^r, giving E[X^r] as the formula. 



In summary, the r-th order moment around a point a follows this general form. When a = 

0, we get the r-th order raw moment, represented as E[X^r]. For discrete X, this raw 

moment is calculated by Σ x_k^r * P(X = x_k), and for continuous X, it is ∫ x^r * f(x) dx 

from minus infinity to plus infinity. This approach applies for any r = 1, 2, and so on. For 

example, μ_1', or the first raw moment, is simply the expected value of X. 

 

 

 

The notation μ1' represents the first-order raw moment, specifically for the random 

variable X, and is calculated as the expected value E(X), also denoted as mx, which is 

simply the mean of X by definition. When r = 1, this expectation simplifies to ∑ xk · 

p(xk) for discrete X and to ∫ from −∞ to ∞ of x · f(x) dx for continuous X. Thus, μ1' 

represents the mean of X. 

Now, if we interpret μ1' as mx, the general form becomes the r-th order moment around a 

point a. Setting a to the mean of X, we obtain the r-th order central moment, denoted μr. 

For clarity, we use μr' for r-th order raw moments and μr for r-th order central moments. 

The central moment is defined as E[(X − μ1')^r], or equivalently E[(X − mx)^r] since μ1' 

is also denoted as mx. If a = μ1', this translates to ∑ (xk − μ1')^r · p(xk) in the discrete 

case, and ∫ from −∞ to ∞ of (x − μ1')^r · f(x) dx in the continuous case. These definitions 

illustrate that for a = 0, we retrieve the r-th order raw moment, and for r = 1, we obtain 

the formula for the mean. 



If a = μ1', then we calculate the r-th order central moment. For r = 1, the central moment 

μ1 equals E[(X − μ1')^1]. Demonstrating this expectation involves calculating E[X − 

μ1'], where μ1' is a constant. Since E(X) = μ1' and the expected value of a constant 

remains constant, the expression simplifies according to these properties of expectation. 

 

 

Therefore, this leads to the conclusion that this is equal to 0. Now, when r = 2, what is μ₂? 

The second central moment is defined as (X - μ₁')². This is known as σₓ², a notation for 

the variance of a random variable. We have already shown two examples of discrete 

random variables: one random variable X takes values -1, 0, and 1, while another random 

variable Y takes values -10, 0, and 10, each with equal probabilities of 1/3. 

Both have the same mean, with μₓ' = 0 and μᵧ' = 0. But how do we distinguish between 

these two datasets? The key difference is in how the values are distributed. In one case, 

all the values are close to 0, while in the other case, most of the values are far from 0—

two values are away from 0, and one value is exactly equal to the mean. This measure, μ₂, 

provides the expected value of the distance from the mean. 

That’s why μ₁' represents the average distance from the mean of this random variable. 

This is also why we find the variance. To calculate the variance of these two random 

variables, you need to find σₓ², which is the expected value of (X - μ₁')². Since μ₁' = 0 for 

this random variable, we find that μₓ' = 0. Thus, the expected value of X² is determined 

using the formula for the r-th order raw moments. 



For this random variable, it will be calculated as: (-1)² * (1/3) + (0)² * (1/3) + (1)² * (1/3). 

So, your variance, σ², will be calculated as follows: this is 0, 1, 1/3, 1, and 1/3. Therefore, 

this is nothing but 2/3. Now, what will be the variance of Y, σᵧ²? σ² will be the expected 

value of (Y - μᵧ')². 

 

 

Here, the mean is also 0, so this is the expected value of Y². Now, the expected value of 

Y² is the summation of yₖ multiplied by the probability of yₖ. For this random variable yₖ, 

we know that Y takes the values -10, 0, and 10, each with a probability of 1/3. So, we 

calculate this as follows: (-10)² * (1/3) + 0² * (1/3) + 10² * (1/3). This gives us: 100 * 

(1/3) + 0 + 100 * (1/3). 

So, we have 100/3 + 100/3, which equals 200/3. You can see that this variance is greater 

than the variance for X, which we found to be 2/3. Essentially, the variance provides a 

measure of how the data are scattered around the center. You can find the mean of a 

random variable, but if you want to understand how the students performed—whether 

their scores are concentrated around the average or if the highest and lowest scores are far 

from the average—you need to calculate the variance. That is why variance is important; 

it measures the dispersion of the dataset and indicates whether the values are near the 

center or scattered away from it. 

Now, let's consider another example. We have already discussed uniform random 

variables. This is an example with a probability density function or cumulative 

distribution function in the discrete case. Regarding uniform distribution, we have 



previously found the mean. I just want to find some additional examples based on what 

we discussed. 

Suppose we have two random variables, X and Y, with probability mass functions pₓ(x) 

and pᵧ(y). If you consider the expected values of a constant, say c, for any random 

variable, what will be the expected value of a constant random variable? If we define a 

constant random variable, X is said to be a constant random variable if it takes only one 

value with a probability of 1. P(X = c) = 1 for some c ∈ ℝ. Then, what will be the 

expected value of c? 

 

 

So, basically, expected values we say for X. It is nothing but the summation by definition 

of xₖ * pₓ(xₖ), which is the summation of xₖ * pₓ(xₖ). So, xₖ is what values X is taking. 

Now, X is a constant random variable taking only the value c with probability pₓ(c) = 1. 

So, c * 1 is nothing but c. 

That is why we denote a constant random variable by a constant. Whenever we say 

expected value of 1, what is 1? You can think of it as a constant random variable taking 

the value 1 with probability 1. Therefore, for any real number, the expected value of c 

will be c. Let X be a random variable with probability mass function pₓ. 

For any real number c ∈ ℝ, the expected value of c * X is nothing but c * E[X]. How will 

we prove that? Let us find out what it is. Here your transformation is y = c * X, which we 

denote as g(X). This is nothing but c * X. 



Now, how will we find the expected value of cX? This is nothing but the summation of 

expected value of g(X). We have the formula as ∑ g(xₖ) * pₓ(xₖ). Now, what are the 

possible values of k? This is ∑ k, where g(xₖ) is nothing but g(X) = c * xₖ * pₓ(xₖ). 

Now, since c is a constant, we can factor it out, resulting in c * ∑ k, where xₖ * pₓ(xₖ). 

Now, by definition, this is nothing but the expected value. So, this is c * E[X]. Therefore, 

for any constant random variable, the expected value of c * X is nothing but c * E[X]. 

Now, in the case of variability, let’s consider X as a continuous random variable. 

 

 

Suppose X has a probability density function fX. Then, what will be the expected value 

of cX? The expected value of cX is the integration of gX times fX dx. By definition, the 

expected value of gX is the integral from minus infinity to plus infinity of gX times fX 

dx. So, if we set gX equal to cX, we have the integral from minus infinity to plus infinity 

of cX times fX dx. 

Since c is a constant, we can factor it out, resulting in c times the integral from minus 

infinity to plus infinity of X times fX dx. By definition, this is nothing but c times the 

expected value of X. Now, let’s discuss the variance. If Y is equal to c times X, then the 

variance of Y, denoted as sigma squared Y, will be equal to c squared times the variance 

of X. How do we prove this? 



The variance of Y is defined as the expected value of (Y minus muY) squared. Now, if 

we take Y equal to cX, we have already shown that muY becomes c times muX. 

Therefore, the expected value of Y is equal to c times the expected value of X, which 

implies muY equals c times muX. Consequently, we can write the expression as (cX 

minus c times muX) squared. Factoring out the constant gives us c squared times the 

expected value of (X minus muX) squared. 

Thus, we conclude that the variance of Y is equal to c squared times the variance of X. 

This is nothing but the variance of X. So, it is c squared times the variance of X. These 

are some of the results we require. More generally, as an exercise, you can prove this. 

 

 

Suppose X and Y are two random variables. You can consider both as discrete random 

variables or both as continuous random variables. Then, you can show that the expected 

value of X + Y is equal to the expected value of X plus the expected value of Y. If we 

write it as E(aX + bY), this is equal to a * E(X) + b * E(Y). This resembles a linear 

transformation. 

In linear algebra, the definition of a linear transformation states that it preserves 

operations like addition and scalar multiplication between vector spaces. Similar 

principles apply here; hence, this is a linear transformation. You can try this exercise 

later, and we will discuss it again. Now, using this concept, we can simplify the variance 



formula. When computing variance, you need to subtract all values from the mean and 

then compute the square of that difference. 

Thus, the variance formula, σ²ₓ, is E[(X - μₓ)²]. Now, this can be expressed as E[(X - 

μₓ)²], which expands to E[X²] - 2X * μₓ + μₓ². Note that μₓ is a real number, and after 

performing the expected value operation, it is still a real number. If we assume this is 

true, we can express it as E[X²] - E[2X * μₓ] + E[μₓ²]. Since μₓ is constant, the expected 

value of a constant times X is the constant times the expected value of X. 

Therefore, we have 2 * μₓ * E[X] + μₓ². This simplifies to E[X²] - 2 * μₓ * E[X] + μₓ². 

Further simplifying, we find that the result is E[X²] - μₓ². If you remember the notation 

for raw moments, this can be expressed as μ₂' - (μ₁')². Whenever you are using data and 

computing the expected values, it will be easy to find because you just need to calculate 

the raw moments—first-order raw moments, second-order raw moments—and then you 

subtract them to find the variance. 

 

So, let us do one example. 


