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You can remember that for this discrete random variable, let X be a discrete random 

variable with the probability mass function given by P(X) = 1/4 whenever X = 1 or X = 2, 

and P(X) = 1/2 whenever X = 3. This is equal to 0 otherwise. You can check that this is a 

probability mass function because it is always greater than or equal to 0, and if you take 

the sum of all the values, it equals 1. However, it is not a uniform distribution since the 

probabilities are different; for X = 3, it is 1/2, and for X = 1 and X = 2, it is 1/4. 

Now, what will be the mean and variance? 

 

To find the mean, the expected value, denoted as μ_X, is defined as the summation ∑ x_k 

P(X_k). The values that X can take are 1, 2, and 3. Thus, the expected value can be 

calculated as E(X) = 1 × P(X=1) + 2 × P(X=2) + 3 × P(X=3). Substituting the 

probabilities gives us 

E(X) = 1 × (1/4) + 2 × (1/4) + 3 × (1/2). 

This simplifies to 

E(X) = (1/4) + (2/4) + (6/4) = 9/4. 

Now, this is simply a notation, where μ_X = 9/4. If you want to find the variance, the 

formula is given by σ^2_X, which is the expected value of (X - μ_X)^2. This can be 

computed as the summation ∑ (x_k - μ_X)^2 P(X_k). To find this, you will need to 

perform the subtraction, square it, and then multiply by the respective probabilities. 

However, instead of calculating it directly, we can use another formula to find the 

variance. 



What we will do is find the second-order raw moment. The second-order raw moment is 

nothing but μ'_2, which is the expected value of X^2. So, the expected value of X^2 is 

calculated as 

E(X^2) = ∑ (X_k^2 × P(X = X_k)), 

where the sum is over all possible values that X can take. We have 

E(X^2) = 1^2 × P(X = 1) + 2^2 × P(X = 2) + 3^2 × P(X = 3) = 1 × (1/4) + 4 × (1/4) + 9 × 

(1/2). 

Calculating this gives us 

E(X^2) = (1/4) + (1) + (9/2) = (1/4) + (4/4) + (18/4) = 23/4. 

 

 

Next, the variance of X, denoted as σ²_X, is calculated using the formula σ²_X = μ'_2 - 

(μ'_1)². We already found that μ'_2 = 23/4 and μ'_1 = 9/4. So, we compute 

σ²_X = 23/4 - (9/4)². 

Calculating (9/4)² gives us 81/16. Now, substituting this back into the variance formula 

gives us 

σ²_X = 23/4 - 81/16. 

To simplify this, we need a common denominator. The common denominator between 4 

and 16 is 16. Thus, 23/4 = 92/16, so substituting gives us 



σ²_X = 92/16 - 81/16 = 11/16. 

So, this variance can be easily found, but you can also try calculating it directly from the 

definition to see if you get the same value; it may be a bit more complicated. You can 

check whether you are getting the same value because we have simply used the actual 

definition, and then we simplified this formula. Now, before moving to another example, 

we will discuss continuous random variable cases. 

 

 

Here, we will discuss another discrete random variable example. Remember, this is for 

the infinite case, and we will work through more examples. For the continuous case and 

discrete case, you can recall that the example given is P(X = n) = 6/π²n² for n = 1 to 

infinity and 0 otherwise. Let us consider this example where X is a discrete random 

variable with the probability mass function given by P(X = x) = 6/π²n² for n = 1 to 

infinity and 0 otherwise. Now, let us find the mean. 

The first moment, μ'_1, is nothing but the expected value of X, which is defined as the 

summation of x_k P(X = x_k). Here, we have an infinite series, so the summation is from 

n = 1 to infinity. The values of x_k correspond to n, and P(X = x_k) is equal to P(X = n). 

This can be expressed as the expected value of X = Σ (n × P(X = n)) = Σ (n × 6/π²n²) from 

n = 1 to infinity. You can see that the constant 6/π² can be factored out, resulting in Σ 

(1/n). 



However, this series diverges; therefore, we cannot find the mean. Since the mean does 

not exist, higher-order moments will also not exist. For instance, μ'_2, which involves 

summing n² times the probability, will also be divergent. Thus, the mean, μ'_1, does not 

exist, and consequently, the variance, σ², also does not exist. This example shows that for 

a discrete random variable, the mean does not exist, and thus the variance also does not 

exist. 

 

 

Now, let's discuss how to find the mean and variance of a continuous random variable. 

We have previously discussed some examples, and now we'll take another example. Let’s 

consider a uniform distribution. We have already talked about the mean and variance in 

this context. For this case, we may have touched on it but didn't go into detail, so let’s 

consider a function where X is a continuous random variable with the probability density 

function given by: 

f(x) = 1/4, for -2 < x < 2, 

f(x) = 0, otherwise. 

To find the mean of this random variable, we use the expected value of X, denoted as μ₁'. 

This is defined by the integral: 

μ₁' = E(X) = ∫₋∞⁺∞ x · f(x) dx 

Since f(x) is non-zero only when -2 < x < 2, we rewrite this as: 



μ₁' = ∫₋2² x · 1/4 dx 

This simplifies to: 

μ₁' = (1/4) ∫₋2² x dx 

The integral of x is x²/2, so we evaluate this from x = -2 to x = 2: 

μ₁' = (1/4) [ (2²)/2 - (-2²)/2 ] = (1/4) · (2 - 2) = 0 

Thus, the mean μ₁' = 0. 

Now, to find the variance σ², we use the formula: 

σ² = E[ (X - μ₁')² ] 

Since μ₁' = 0, this simplifies to: 

σ² = E(X²) = μ₂' 

To find μ₂', we calculate: 

μ₂' = ∫₋2² x² · f(x) dx = ∫₋2² x² · 1/4 dx 

This simplifies to: 

μ₂' = (1/4) ∫₋2² x² dx 

The integral of x² is x³/3, so we evaluate this from x = -2 to x = 2: 

μ₂' = (1/4) [ (2³)/3 - (-2³)/3 ] 

This gives: 

μ₂' = (1/4) [ 8/3 - (-8/3) ] = (1/4) · (16/3) = 4/3 

Thus, the variance σ² = 4/3. 

I hope you have understood how to find the mean and variance for discrete random 

variables and continuous random variables. We also provided an example of a discrete 

random variable where the mean and variance do not exist. 

 



 

Now, let us consider this continuous random variable and its density function. Here, we 

have the density function that we discussed. So, X is a continuous random variable 

defined by f(x) = c / x². We found that c = 1, so the density function is f(x) = 1 / x² for x > 

1 and x < ∞, and it is 0 otherwise. Let X be a continuous random variable with the 

probability density function given by: 

f(x) = 1 / x², for x > 1 and x < ∞, 

f(x) = 0, otherwise. 

We also found the probability between 2 and 3. Now, what will be the mean of this 

random variable? μ₁', which is the expected value of X, is defined by the integral: 

μ₁' = E(X) = ∫₋∞⁺∞ x · f(x) dx 

Because f(x) is non-zero only from x = 1 to x = ∞, this becomes: 

μ₁' = ∫₁⁺∞ x · (1 / x²) dx 

This simplifies to: 

μ₁' = ∫₁⁺∞ (1 / x) dx 

Integrating (1 / x) gives log(x). If you evaluate this from 1 to ∞, it diverges. So, the mean 

does not exist finitely; it is actually divergent. Since the mean does not exist, higher-order 

moments will also not exist here. Therefore, this is an example of a continuous random 

variable where the mean and variance do not exist finitely. 



In summary, we can say that the mean and variance of this random variable do not exist. 

So, this is what we discussed in the moment. I hope it is clear now how to find the first 

order moment, second order moment, mean, and variances for discrete random variables 

and continuous random variables. We have discussed some numerical examples as well. 

Next, we will look at some special distribution functions that we usually use when 

modeling or analyzing data 

 

 

When we find data in nature, we often find these distributions to be very useful. The 

Bernoulli distribution, binomial distribution, and Poisson distribution are examples of 

discrete distributions. On the continuous side, we have distributions like the exponential 

distribution, gamma distribution, and normal distribution. We will explicitly discuss how 

these distributions look, what their means and variances are, and cover their distribution 

functions, probability mass functions in the case of discrete random variables, and 

probability density functions for continuous random variables. It's important to learn 

these distributions well because they are frequently used in statistical inference and data 

science. 

One of the distributions we will start with is the Bernoulli distribution. From the 

beginning, we discussed a special example: tossing a coin. When tossing a coin, the 

outcomes are either heads or tails. In this case, we generally assume it is an unbiased 

coin, so the probability of getting heads is 1/2. However, it may not always be exactly 

1/2; we will assume that in general, the probability of heads is some p, where p ∈ [0, 1]. 



In nature, we find this kind of random phenomenon as well. For instance, when we give 

medicine to a patient, the response can often be categorized into two outcomes: success 

or failure. We can model this data using the Bernoulli distribution. When tossing a coin 

once, the sample space consists of heads and tails. We define a random variable X such 

that: 

X = 1 for heads 

X = 0 for tails. 

The probability mass function is defined accordingly. The relationship is that X = 1 for 

heads and X = 0 for tails. Now, let’s determine the probability that X = 1. We assume this 

probability is p, which may not always be 1/2. So, in general, this is represented as p. 

The probability that it results in tails is 1 - p. Thus, the probability mass function can be 

expressed as follows. In general, we denote the probability mass function of this random 

variable as P_X(x), which can also be represented as P(x). This is equal to: 

P_X(x) = p^x * (1 - p)^(1 - x), where x ∈ {0, 1} 

Otherwise, it is equal to 0. 

To clarify the relationship, consider that P(X = 1), which is the probability mass function. 

When you substitute x = 1, you get: 

P_X(1) = p^1 * (1 - p)^0 = p. 

Thus, the probability that X = 1 is p. Now, let’s look at the probability that X = 0. The 

probability mass function for X = 0 is P(X = 0). 

If you substitute x = 0, this becomes: 

P_X(0) = p^0 * (1 - p)^1 = 1 * (1 - p) = 1 - p. 

For any other value, the probability will be zero. The range of X is only 0 and 1. Now, if 

you draw the probability mass function, it is very simple. 



 

This may be useful when we discuss other random variables. The probability mass 

function P(X) at 0 is 1 - p, and at 1, it is p. Here, we assume that p > 1 - p. Next, what 

will be the cumulative distribution function (CDF)? The cumulative distribution function 

of X is given by F(X), which represents the probability that X ≤ x. 

To find this, we take the probability mass function, which only considers 0 and 1. For any 

value of X < 0, since the minimum value of this random variable is 0, the cumulative 

distribution function will be 0. Whenever X ≥ 0, then P(X = 0) is equal to 1 - p, and this 

applies up to 1. We have discussed previously how to find the probability distribution 

function from the probability mass function. Thus, whenever X is less than the minimum 

value, the cumulative distribution function will equal 0. 

When X is between 0 and 1, the value of P(X = 0) is 1 - p. For values greater than 1, the 

cumulative distribution function will be the maximum value, which is P(X = 0) + P(X = 

1). Therefore, this is (1 - p) + p, which equals 1. This is less than infinity because there 

are only two possible values. To graphically represent the cumulative distribution 

function, you would illustrate it as follows: for values less than 0, the CDF is 0. 

At 0, it is equal to 1 - p, and this continues up to 1. At 1, it will equal 1. If you write this 

as 1, the distance is p. Thus, the total distance will be 1, meaning that p + (1 - p) = 1. This 

is a step function because it is a discrete random variable. It will be a step function, 

representing the cumulative distribution function. 

 



 

Now, if we want to find the r-th order moment, as well as the mean and variances, we 

start by calculating the first-order moment, denoted as μ₁. The first-order moment, μ₁, is 

the expected value of X. By definition, this is given by μ₁ = Σ xₖ P(X = xₖ). Since this 

random variable takes only two values, 0 and 1, we have μ₁ = 0 × P(X = 0) + 1 × P(X = 

1) = 0 + 1 × P(X = 1) = P(X = 1) = p. Now, we consider the second-order raw moments. 

In general, to find the r-th order raw moment, we use the definition μᵣ = E[Xᵣ] = Σ xₖᵣ P(X 

= xₖ). For our case, where the values are only 0 and 1, we get μᵣ = 0ᵣ × P(X = 0) + 1ᵣ × 

P(X = 1) = 0 + 1 × P(X = 1) = p. Thus, for any r from 1 to n, not just for r = 1, this value 

is p. This means that for r = 2, μ₂ = p. It's important to find these moments because we 

want to calculate the variance of this random variable, which is defined as Var(X) = E[(X 

- μ₁)²]. 

However, we also have a simplified formula: Var(X) = μ₂ - μ₁². Since μ₂ = p, we can 

substitute: Var(X) = p - μ₁² = p - p² = p(1 - p). This is the variance of the Bernoulli 

random variable, and we have discussed how simple it is to find the mean and variances 

in this case. You can also compute the r-th order moment. So, this is one of the important 

distributions we discussed here, including their probability mass function, how it looks, 

and what the probability distribution function and cumulative distribution function are. 

 



 


