
PROBABILITY THEORY FOR DATA SCIENCE

Prof. Ishapathik Das

Department of Mathematics and Statistics

Indian Institute of Technology Tirupati

Week - 01

Lecture - 02

Sample Space and Events

Let us discuss this sample space. What is sample space? Whenever we are doing a

random experiment, meaning we are repeating this phenomenon in our lab, we know all

the outcomes of this phenomenon. That random experiment, whenever we are doing, all

the possible outcomes of a phenomenon or random experiment, we say all possible

outcomes of a random phenomenon or random experiment are called the sample space.

For example, if you are tossing a coin, suppose we denote that random experiment by this

abbreviation RE.

Suppose the random experiment, it is tossing a coin. So, what are the possible outcomes

of this random experiment? It may be head or tail. These are the possible outcomes. All

possible outcomes of this random experiment, it is known as sample space.

Let us consider another random experiment. Suppose, this is random experiment second



example. Suppose, throwing a die. Or rolling a die. Suppose you are rolling a die. Then,

what are the possible outcomes?

S = all possible outcomes. Suppose you denote the sample space as S₁ here, and the
sample space S₂. This is the set of all possible outcomes: {1, 2, 3, 4, 5, 6}. It seems like
sample space contains always finite number of elements. This is like an abstract.

These are not real numbers, head and tail. These are some integer values. It may take any

real numbers also. It may not be discrete. For example, let us consider the random

experiment of the lifetime of an electronic group.

Suppose it is a transistor. So, the lifetime of electronic goods, or you can consider a very

simple bulb, suppose. The lifetime of electronic goods. So, lifetimes mean we are

measuring time. Suppose we consider one bulb and want to see how many years or how

many hours, in some units.

It is actually, if you consider properly, time is a continuous variable. It may be any point

on the real line, but if you use units like hours or minutes, then it will be discretized.

However, if you consider it theoretically, it could last any time on the real line. So, we

will see how much time t it is actually working. So, after that, it fails.

So, this sample space, it can be represented by a real number t. For example, if you buy

the bulb and then it is not working immediately, then the lifetime will be zero. So, it is

possible that theoretically it may be zero, otherwise it is greater than zero. And we don’t



know how long it will continue. We don’t know if there is any maximum limit; it can

work for more than m, or it is not possible. We do not know that much value.

So, that is why theoretically we write that t, the lifetime of a bulb, is such that t belongs

to the real numbers and t is greater than or equal to zero and less than infinity. So, here

the sample space is uncountable. So, we know that countable set and uncountable set.

So, a countable set means any set where, if you have a subset of natural numbers, A is a

subset of natural numbers. Natural numbers are denoted by 1, 2, 3, and so on.

A is a subset of natural numbers. If you have a one-to-one correspondence, then A may
be the whole set of natural numbers also. If you have a bijective correspondence from A
to some set S, then S is known as, so g is one-to-one, or we say that it is one-to-one. If
there is any one-to-one correspondence from A to S, it has to be one-to-one also. In other
words, if there is a one-to-one correspondence from S to A, where A is a subset of natural
numbers, either A may be the whole set of natural numbers or a subset of natural
numbers. If there is a one-to-one correspondence from S to A, or if there is a bijective
function from S to A, then S is known as a countable set.

It may be infinite. So, for example, the set of natural numbers itself is countable because
1 goes to 1. It is a bijective function and one-to-one. And if you consider Q, Q is the set
of rational numbers. That means all the elements can be represented by p/q, where q is
not equal to zero and p and q are integers. Note that Z, the set of integers, contains 0, 1,
2, -1, -2, and so on.



There is also a one-to-one correspondence between Z and the natural numbers. Similarly,
Q also has a one-to-one correspondence with the set of natural numbers. If it is a finite
number, it is also a countable set because A is a subset of the natural numbers. So you
can take this subset and then show that it is just an identity map. It is a one-to-one
correspondence from the set to the subset of the natural numbers.

So this is also a countable set. These are all countable sets, but whenever we cannot
represent a one-to-one correspondence between the set and a subset of natural numbers,
then it is an uncountable set. For example, the set of real numbers. The real numbers are
nothing but the union of rational and all the irrational numbers. So, now even if you
consider the interval from 0 to 1 on the real line, all the points in between 0 and 1 form an
uncountable set.

So, 0 to infinity is also an uncountable set. So, sample space may be a countable set,
sample space may be an uncountable set also, it may be finite, it may be countably
infinite, or it may be uncountably infinite. So, this is the sample space. Next, we will
discuss an important topic known as an event. So, what is an event?



That is because later on we will discuss the probability of an event. So, that’s why it

should be understood very clearly. Many times, we just say, for a layman, it is nothing but

a subset of a sample space. So, if S is discrete, you can consider all subsets of the set;

these subsets are the events we discuss. So here, any subset of the sample space S is

called an event. Even when S is a discrete set, the Venn diagram represents the event.

For example, if you consider the random experiment of tossing a coin, then in this

experiment, the sample space S₁ contains heads and tails. So, what are the subsets we can

consider? Subsets include one subset like heads, another subset like tails, the null set, and

the set S itself. So, containing all these subsets, all subsets of S are considered. Note that

if it is a finite set, then we can count all subsets.

If the number of elements in S is, suppose n, then we say it is called a power set. So, we
denote it like a script A. The power set is nothing but all subsets. So, the power set, we
say, is defined by the set of all subsets of S. If you consider the set of all subsets of S, it is
known as the power set.

If the number of elements in S is n, then the number of elements in the power set is 2
raised to the power of n. Note that this notation is just for a short type of writing. For
example, if S1 contains only two elements, then the power set contains all the subsets of
S1. It contains 1, 2, 3, and 4 subsets, which is 2 raised to the power of 2, or 4 elements.
So, this shows the relationship between the power set and the finite set.

If it is infinite, then 2 raised to the power of infinity is not a number. If it is infinite, then
2 raised to the power of infinity is not a number. But if S is uncountable, then we cannot
say that the power set is countable. If S is an infinite set, then the power set will be much
larger. We represent this with a cardinal number.



For example, the cardinal number for natural numbers is denoted by eta. All sets with the

same cardinal number as natural numbers are countable. If there is no one-to-one

correspondence between a set and natural numbers, then it is uncountable. For example,

the cardinal number for the set of real numbers is represented as 2 to the power of eta.

This helps us understand larger sets because, with infinite sets, we cannot compare them

just by the number of elements as we do with finite sets.

This set is bigger than this set because it contains four elements, while this one contains

only two elements. We can compare these finite sets. But for infinite sets, like the set of

natural numbers and the set of rational numbers, we cannot compare them just by

counting elements. Both are infinite, so we cannot compare their sizes in the same way as

finite sets. So, by using some bijective correspondence, or the concept of one-to-one

mapping, we can have a way to compare infinite sets.

For example, eta is a cardinal number for natural numbers. All countable sets should have

the same cardinal number because there is a one-to-one correspondence with natural

numbers. And when we go to uncountable sets, like the set of real numbers, it has a

cardinal number of 2 to the power of eta. These are some concepts that are not that much

needed here. So, we will discuss the related things.

An event is a subset of a sample space. So, if A is a subset of the sample space, then A is

an event. Similarly, if B is also a subset of the sample space, then B is an event. So, let us

discuss another example. For example, let’s consider a random experiment of rolling a

die.



The sample space contains 1, 2, 3, 4, 5, and 6. So, the power set of S2 will contain many

subsets, 2 to the power of 6 in total. Some of the subsets are: {1}, {2}, {1, 2, 3}, {2, 4,

6}, {1, 3, 5}, {3, 6}, and so on. Suppose we consider the subset A = {2, 4, 6}. This is a

subset of S and belongs to the power set. A includes all the even numbers.

When we say this event occurs, it means that in one observation of rolling a die, the

outcome will be one of the elements in A. For example, if the observed result is 2, then 2

is an even number and is part of the subset A. Now, if the outcome of the observation

belongs to the subset A that we are considering, then we say that A has occurred, or A

has been observed. This means the event A happened. So, whenever we see that the

outcome is 2, and 2 belongs to A, then A has been observed.

Similarly, if the outcome is 4, A is observed. If the outcome is 6, A is also observed.

However, if the outcome is 1 and 1 does not belong to A, then A has not occurred. In this

case, we say that the event A did not occur. So, that is the concept of how we define an

event. Now, if you consider the third random experiment, it is measuring the lifetime of

an electronic good, like a bulb.

In that case, what is the sample space? This is all t belonging to the real numbers such

that t is greater than or equal to 0 and less than infinity. It is a uncountable set. In that

case, if you consider the power set, which means all subsets of S3, there will be a

problem. So, researchers or scientific communities found that when they consider all

subsets of S3, which is the power set, and treat these subsets as events, they face

problems defining probability.



So, in a broader sense, in advanced probability, you may learn that this is called measure

theory. So, in measure theory, if you define a measure, you can define the probability on

these subsets or events. For countable or discrete sets, it is okay to consider the whole

power set. However, for uncountable sets, this approach can be problematic. But if it is an

uncountable set, we cannot consider the power set.

If you consider the power set, then you cannot define the probability. It will not be

well-defined. So, there will be some contradiction, which can be shown, but we will not

go into that direction. We will just understand that when the set is not discrete but

continuous or uncountable, we need to define some special subsets, not all subsets. We

have to consider a class of subsets of S, the sample space.

That is known as a sigma-algebra. So, all the elements inside that sigma field are known

as events, not all subsets. So, first, we will discuss the definition of a field. What is the

definition of a field? Let S be a non-empty set.

A class C of subsets of S is called a field if it contains S itself and is closed under the

formation of complements and finite unions. So, field is defined like that. Let S be a

non-empty set. A field of S is a class of subsets of S. This means it is a collection, so it is

a class of subsets of S. A field of S is a class, referred to as C, which is a subset of S and

satisfies the following conditions.



So, what are those conditions? The first condition is that S ∈ C. The second condition is
that if A ⊆ S such that A ∈ C, then A' (the complement of A) also belongs to C. The third
condition is that if A₁ and A₂ are subsets that both belong to C, then A₁ ∪ A₂ (the union of
A₁ and A₂) also belongs to C. This means that finite unions are included, and this is
known as a field.

It is important to understand the concept of a sigma field. A sigma field is essentially a
field with an additional condition. Specifically, a sigma field must be a field and must
also satisfy one more requirement. This requirement states that while a field considers
finite unions, a sigma field considers countable unions. So, we will discuss some
examples.



So, what is the sigma field? Sometimes it is known as sigma-algebra. Some books
mention sigma algebra, while in others, it is discussed as a sigma field. A sigma field is
defined as follows: Let S be a non-empty set, and let C be a collection of subsets of S. C
is said to be a sigma field if it satisfies the following conditions:

1. S ∈ C;

2. If A ∈ C, then the complement of A, denoted as A', also belongs to C;

3. If a countable collection of subsets belongs to C, then the union of these subsets
also belongs to C.

So, this means that if there is a countably infinite collection of subsets of S that belongs
to C, then their union also belongs to C. This is known as a sigma field or sigma algebra.
Note that if a collection of subsets of S is a sigma field, it must also be a field, because
any sigma field includes finite unions.

For example, if A₁ and A₂ belong to C, then their union, denoted as A₁ ∪ A₂, also belongs
to C. Since a sigma field is closed under countable unions, it satisfies the properties of a



field. This refers to an infinite collection, such as a countable infinite series of subsets
like A₁, A₂, A₃, and so on. According to the third property of a sigma field, if each subset
in this collection belongs to C, then their countable union must also belong to C.
Therefore, because a sigma field is closed under countable unions, it will also include
finite unions. Hence, a sigma field must be a field.

Let's discuss some examples. For instance, consider a random experiment where the
sample space S₁ consists of the outcomes "head" and "tail" from tossing a coin. We need
to determine if the power set of S₁ is a sigma field. Because the power set contains all the
elements, the complement of S also belongs to the power set. Any subset you consider
will have its complement as a subset of S, and that complement will be inside the power
set of S.

Now, if you consider some countable elements of the power set, those are subsets of S. If
you take the union of all these subsets, it will also be inside S. Therefore, the power set
will be a sigma field. However, we are not interested in the power set because if S is an
uncountable set, then the power set will face difficulties in defining the probability. So,
let us define some sigma fields that are not power sets.

So, let us consider a case where A is just H. Now, I want to check whether the collection
containing S₁ and A will be a sigma field. See that S₁ belongs to the collection, so the first
condition is satisfied: S₁ ∈ C. The second condition is that if A ∈ C, then its complement
must also belong to C.

However, the complement of A is "tail," which is not in C. Therefore, it is not a sigma
field. Hence, to make it a sigma field, we will add some of the sets inside. So, let us take
the union of the complement of A, which is "tail." Including the union of "tail" as well,
our set will also include S₁, the complement, and the empty set ∅.



Thus, C will become the power set. So this is nothing but head, tail, S1, and the empty

set. So, if you include all these sets, you can see that it forms a sigma field. Because A

belongs to C, its complement, which is tail, also belongs to C. Since there are only four

elements, we need to check only finite unions.

You can include the empty set as well. For any infinite collection, if you add sets like the

empty set, you can see that this will be in C. Thus, this will be a sigma field, but it is

again the power set. But what we did is this: whenever it is not a sigma field, we add

some sets to make it a sigma field. So, we add subsets of S to make it a sigma field.

This kind of process is known as the sigma field generated by the set. So, we will take a
collection. Let us consider a second example involving a random experiment. Suppose
this is S₂. In this case, S₂ contains {1, 2, 3, 4, 5, 6}. Now, let us consider A as {1, 2}, B as
{3, 4}, and C as {5, 6}.



Suppose we take this collection where C is present. Let’s use a different notation:
suppose F is the class of subsets of S₂ containing S₂ itself, A, B, and C. Let us determine
whether this is a sigma field.

Condition one: S₂ ∈ F. Condition two: A, which is {1, 2}, must also be in F. So, the
complement of A will be {3, 4, 5, 6}. This is not in F.

So, what will we do? We will add this set. So, this is not a sigma field. First of all,
suppose A is {1, 2}. A ∈ F, but we see that the complement of A does not belong to this
collection F. Hence, F is not a sigma field.

F is not a sigma field. So, then what will we do? We denote that, suppose, we say this is a
set S' here. S is the set containing all these collections, such as A and S₂. Let us use
another notation here.

Let S' represent the set containing A, B, and C. This set is not a sigma field. We denote
this as the sigma field generated by S'. So, what is that? You include many more other
sets that are required. So, what will be the sigma field generated by S'?

Now, S₂, A, B, C, their unions, B ∪ C, A ∪ C, and their complements are also included.
This means A' ∩ B', because by De Morgan's law, the complement of A ∪ B is A' ∩ B',
and similarly B' ∩ C', A' ∩ C', and so on. You include many more sets, and then if you
take the union, such as A ∪ B ∪ C, which is S₂, you will see that it will be a sigma field.
So, this is called the sigma field generated by the set S. Now, let us consider the third
example.



Now, let us consider the third example. This random experiment involves measuring the

lifetime of a bulb. So, for the lifetime of a bulb, if you consider it, what will be our

sample space? This is t, which belongs to the real numbers such that t is greater than 0

and less than infinity. Now, let us consider one set, which is 0 to 1. Now, we want to find

the sigma field.

If we consider only this set, suppose your C contains only this subset. So, it is a subset of

S3, obviously. Now, if C is equal to A and contains only the set A, will it be a sigma

field? It will not be a sigma field because A complement is nothing but the set from 1 to

infinity. It will not be a sigma field.

We will consider a sigma field generated by C. So, this is C. This is the sigma field
generated by C. Let us denote it by Cσ. What will be the set? Since it has to be a sigma
field, S₃ has to be included here. A is already there. Therefore, the complement also has
to be included, and the null set is there as well. Now, you can see that this is a sigma



field. You can add more sets also so that it will be a sigma field. But we want to add that
many sets, which is becoming just a sigma field.

So, it is called the smallest sigma field generated by the set C. So it will be a sigma field
because if you consider S₃, it belongs to Cσ. The second condition is that if A belongs to
Cσ, then the complement of A also belongs to Cσ. This is because the complement of the
complement of A is A. If you take the union, this is nothing but S₃.

If you take the intersection, this is nothing but the empty set, ∅. All these belong to the
sigma field. So, any collection also, if you consider, because there are only a finite
number of elements, that is why for any collection A₁, A₂, ..., Aₙ, if you need to make it
infinite, you have to include the empty set and the sets A₁, A₂, etc. Taking the union of Aᵢ
where i ranges from 1 to infinity, this countable collection will also be inside C. So, this
will be a sigma field.

So, this is some kind of concept of a sigma field we discussed. So, this is required

whenever we define probability. This sigma field concept will be required, that's why we

discussed it. You may go through in detail some of the books also we refer, so there you

can find more details about this sigma field and some of the examples we discussed. So,

please go through it and see whether you have understood and get clarity.

Next, we will discuss how these events are defined because this is a subset of a sample

space. Some of the set operations we need to know are very important, such as union and

intersection. Maybe you have already learned those things.


