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Now, the question is how many bombs are required to completely destroy the target. If 

we throw n bombs, this random variable can be represented by X₁, X₂, ..., Xn, where each 

bomb Xi has a 50% chance of striking the target, which is equal to 1/2 for i = 1 to n. As 

we discussed earlier, these are all Bernoulli distributions; they are independently and 

identically distributed random variables, meaning they all have the same probability mass 

function. Now, we know that X₁ + X₂ + ... + Xn follows a binomial distribution with 

parameters n and p = 1/2. 

For destroying the target, we need two direct hits, so that is why we have this Y, which is 

a binomial distribution. The probability that Y = y represents how many bombs actually 

hit the target out of n, and this probability is given by: 

P(Y = y) = nCy * p^y * (1 - p)^(n - y) 

where p = 1/2. So, y can be equal to 0, 1, ..., n, and it is equal to 0 otherwise. Now, this 

can be simplified as: 

P(Y = y) = nCy * (1/2)^n 

because whenever the probability is 1/2, we can simplify in this way. To completely 

destroy the target, at least two direct hits are required. The question asks how many 

bombs must be dropped to give a 99% chance or better of completely destroying the 

target. 

 



 

We need at least two hits, as stated in the information provided. The probability of 

getting at least two direct hits means that the random variable Y, representing the number 

of hits, should be greater than or equal to 2. This means Y ≥ 2. Since we do not know n, 

the total number of bombs dropped, we express this as the probability that Y = 2 plus the 

probability that Y = 3, and so forth up to n. The sum of the probability mass function 

should equal 1, so we can write this as: 

1 - P(Y = 0) - P(Y = 1) 

We can simplify this expression to: 

1 - P(Y < 2) 

which gives us: 

1 - P(Y = 0) + P(Y = 1) 

We are asked to compute these probabilities, and they must be greater than or equal to 

99%. Specifically, we need to find the probabilities that Y = 0 and Y = 1. The probability 

that Y = 0 can be found from the expression: 

P(Y = 0) = nC0 × (1/2)^n 

and the probability that Y = 1 is: 

P(Y = 1) = nC1 × (1/2)^n 



Hence, we need to determine n such that the probability of Y ≥ 2 is at least 99%. This 

implies that: 

1 - P(Y < 2) ≥ 0.99 

or: 

1 - P(Y < 2) ≤ 0.01 

This sets the stage for finding the number of bombs needed. This probability is the 

probability of Y < 2, which implies: 

P(Y ≤ 1) ≤ 1/100 

So, if Y < 2, we found: 

(1/2)^n × (1 + n) ≤ 1/100 

This implies that: 

2^n ≥ 100 + 100n 

4o mini 

 

 

You have to solve this, and since it’s not a linear equation, you need to check different 

values of n. For example, if n = 1, then 2^1 = 2, which doesn't satisfy the condition. If 

you take n = 10, then 2^10 = 1024, and you compare this to 100 + 100 × 10 = 1100. This 



still doesn't satisfy the inequality. However, if you try n = 11, 2^11 ≥ 100 + 100n, which 

confirms that the minimum number of bombs needed is at least 11. 

So, if n is anything greater than or equal to 11, then n = 11. So, when n ≥ 11, this satisfies 

the relation. In that case, we will mention that at least n = 11 bombs should be dropped to 

achieve at least two hits, with a minimum 99 percent probability. Two direct hits are 

required to destroy the target completely, so at least 11 bombs must be dropped to give a 

99 percent chance or better of completely destroying the target. I hope you have 

understood how to use the binomial distribution for solving this kind of numerical 

problem. 

 

 

Now, we will discuss the Poisson distribution, another important distribution. We have 

completed our discussion on Bernoulli distribution and binomial distribution, and now we 

will start discussing some other important distributions. The range of the random variable 

for Bernoulli distribution is 0 or 1, and for binomial distribution, the range is 0 to n, 

which are finite numbers. Now, we will discuss another distribution that is also a discrete 

random variable. The range of this random variable can be infinite, but it will be 

countably infinite. 

A random variable X is called a Poisson random variate with parameter λ > 0 if its 

probability mass function is given by a specific relation. A random variable X is said to 

have a Poisson distribution with one parameter, which is λ, a real number greater than 0 

and less than infinity. The probability mass function of X is given by: 



P(X = x) = e^(-λ) × λ^x / x! 

where x = 0, 1, 2, ..., and it equals 0 otherwise. You know that e^x has an infinite series 

expansion: 

e^x = 1 + x/1! + x²/2! + x³/3! + ... 

which is valid for any real number. This means it is always greater than or equal to 0, 

confirming that this is a probability mass function. 

If you take the sum of this probability mass function from x = 0 to ∞, you have: 

Σ (from x = 0 to ∞) e^(-λ) × λ^x / x! 

By factoring out e^(-λ), you can express this as: 

e^(-λ) × Σ (from x = 0 to ∞) λ^x / x! 

This summation resembles the expansion of e^λ. Thus, e^(-λ) × e^λ = e^0 = 1. So, that is 

why it is a probability mass function. 

 

 

Now, what are the values? If you take, suppose x is equal to probability that x is equal to 

x, this is nothing but: 

P(X = x) = e^(-λ) * λ^x / x! 

whenever x = 0, 1, 2, ...; this is equal to 0 otherwise. So, now, if you take x = 0, P(X = 0) 

is nothing but the probability that x = 0. This is: 



P(X = 0) = e^(-λ) 

So, λ is any value; λ can be, suppose, 3, then it will be e^(-3). So, λ is any value on the 

real line. It is some number you can consider from 0 to infinity, which is a parameter; 

depending upon the value of λ, it will be a different value. 

P(X = 1) will be nothing but the probability that x = 1. So: 

P(X = 1) = e^(-λ) * λ^1 / 1! = λ 

So, similarly, you can denote this as P0 for P(X = 0), and P1 for P(X = 1), and so on. 

Now, if you draw this curve to understand it, this is random variability at 0, 1, 2, and so 

on. At x = 0, this is P0; at x = 1, this is P1; at x = 2, this is P2, and so on. So, whenever 

you observe different values of λ, you will see that this will be the probability. 

It is called a mode also, where it is maximum. The maximum probability will be around 

λ, which is the mode. According to this curve, this λ may be close to 2 because it is 

maximum. It increases and then decreases, like that. This curve looks like it increases and 

then decreases. 

So, that is why it is a mode here and it is a unimodal distribution. Now, how can you find 

the cumulative distribution function (CDF) for this Poisson distribution? The CDF of a 

Poisson random variate is given by the probability that x ≤ x. We have already discussed 

how to find the CDF from the probability mass function. The minimum value is 0, so it 

will be 0 when x < 0. 

 

 



Whenever X ≥ 0 and X < 1, this will be P(0). We have already discussed this in the 

context of binomial distribution cases. For values where 1 ≤ X < 2, this will be P(0) + 

P(1), and it will continue in this way. For any i, where i ≥ X and i ≤ i + 1, this is nothing 

but P(0) + P(1) + ... + P(i). This series will converge to 1 at infinity, as it has an infinite 

range. 

If you try to represent this graphically, the CDF looks like this: on the x-axis, you have 

values 0, 1, 2, 3, and so on. It starts at 0 here, then moves to some value, and continues to 

increase. Suppose it reaches 1; it will converge at infinity. This means that as X → ∞, the 

cumulative distribution function approaches 1 asymptotically. This indicates that f(X) 

will approach 1 as X → ∞. 

It will not reach a finite value of exactly 1, but there will always be some probability 

remaining close to 1. So, this random variable has a countably infinite range. Now, we 

will discuss how we can find the mean and variance, which are important measures in the 

Poisson distribution. To find the mean of this random variable, denoted as μ, we use the 

expected value of X, defined as the summation of xₖ multiplied by Pₓ(xₖ). The possible 

values are given by the summation from X = 0 to ∞ of x × Pₓ(xₖ), which equals e^(-λ). 

This is the probability mass function: 

Pₓ(x) = e^(-λ) (λ^x) / x! 

Simplifying this, we start with the summation; for x = 0, this is 0, so we only consider the 

summation from x = 1 to ∞ of x × e^(-λ) (λ^x) / x!. We can express x as x × (x - 1)!, 

leading to cancellation and leaving us with e^(-λ), which is independent of x. Now, we 

need to solve this, yielding: 

e^(-λ) × ∑ (from x = 1 to ∞) (λ^x) / (x - 1)! 

We can rewrite this as: 

λ × ∑ (from x = 1 to ∞) (λ^(x - 1)) / (x - 1)! 

Letting r = x - 1, we have: 

∑ (from r = 0 to ∞) (λ^r) / r! 

This is an infinite series that converges to e^λ. Therefore, we find that: 

λ × e^(-λ) × e^λ = λ 



The mean of the Poisson distribution is nothing but the parameter λ. Now, we will find 

what the variance is. For finding the variance, we need the second-order moments 

because the variance of X, or σ², can be found by definition. The variance of X can be 

defined as Var(X) = E(X²) - (E(X))². 

 

 

In its simplified form, this is μ₂ - μ₁². Now, what is μ₂? μ₂ is the expected value of X². By 

definition, the expected value of X² is the summation of x² × Pₓ(xₖ) over k. Here, x² takes 

values from 0 to ∞, so we have the summation from x = 0 to ∞ of x² × Pₓ(x). 

The probability mass function Pₓ(x) for this Poisson distribution is e^(-λ) × (λ^x) / x!. 

Therefore, this is e^(-λ) × (λ^x) / x!. Similarly, if we take x = 0, this contributes 0, and we 

sum from x = 1 to ∞, yielding x² × e^(-λ) × (λ^x). We can express this as x × (x - 1)! in 

the denominator. So, one x cancels out, but another x remains, and further cancellation is 

not possible here. 

We cannot simplify this in the same way because of the remaining x in the denominator. 

So, we can get x - 1. 

 



 


