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So, these are some properties of the gamma distribution. The gamma distribution has 

different values for its parameters, and you can find it in various forms. Its cumulative 

distribution function also looks a certain way. Most notably, it's unimodal, meaning it has 

a single maximum value in the density function. Sometimes, it appears unimodal—either 

it’s only decreasing, or it increases and then decreases. 

That’s why it has one maximum, which is both a local and global maximum. Now, let’s 

discuss some applications of the gamma distribution. There are many applications of the 

gamma distribution. It is often used to analyze the amount of time until a specific event 

occurs—like in survival analysis or lifetime data analysis. We usually use the gamma 

distribution for things like the amount of time from now until an earthquake occurs, the 

length in minutes of long-distance business calls, the number of months a car battery will 

last, and the time between two customers arriving at a computer center. 

 

So, whenever you are modeling something like a time variable, it’s a positive random 

variable and is also unimodal. So, in that case, we can use a gamma distribution. Let’s go 



through an example with the gamma distribution—a numerical example—so we can apply 

it. For instance, the daily consumption of milk in a city... though there might be a typo here. 

In a city, the daily consumption of milk is approximately distributed as a gamma variable, 

with the parameter α = 2 and λ = 1/10,000. 

 

 

The city has a daily stock of 10,000 gallons. What is the probability that the stock will be 

insufficient on a particular day? So, here it’s mentioned that X ~ Gamma(α = 2, λ = 

1/10,000). So, the density function, f_X(x), is nothing but λ^α * x^(α - 1) * e^(-λx) / Γ(α), 

where 0 < x < ∞, and 0 otherwise. 

 

 

This is the density function. In this example, α = 2 and λ = 1/10,000. Now, the city has a 

daily stock of 10,000 gallons. The question is, what is the probability that the stock will be 

insufficient on a particular day? The stock will be insufficient when the consumption 

exceeds 10,000 gallons. 



So, X is the variable representing consumption. It is actually the variable X for 

consumption. So, if the mean consumption on a particular day is less than 10,000, it will 

be sufficient. But if it exceeds 10,000 on a particular day, then it will be insufficient. So, 

that means we are asked to find P(X > 10,000). 

We will calculate that probability. So, this question asks what the probability is that X > 

10,000. So, this is what we have to find. P(X > 10,000) is just the integral from 10,000 to 

∞ of f_X(x) dx, where f_X(x) is the gamma probability density function. This is the 

probability we have to find out. 

 

 

So, let’s do it. The probability that X > 10,000 is the integral from 10,000 to ∞ of f_X(x) 

dx, which is the integral from 10,000 to ∞ of λ^α * x^(α - 1) * e^(-λx). So, let’s put those 

values in. So, now α is already given, and λ is also given as 1/10,000. So, λ^α, where α = 

2, and e^(x^(α - 1)), which is 2 - 1, e^(-λx). 

So, x is divided by 10,000, then dx by Γ(α). This is the formula for f_X(x), Γ(α). So, what 

we’ve just used here is f_X(x). We can write this to avoid any mistakes: the integral from 

0 to ∞ of λ^α * x^(α - 1) * e^(-λx) / Γ(α) dx. Here, we substitute α = 2 and λ = 1/10,000. 

So, λ = 1/10,000^2, x^(2 - 1), e^(-x/10,000) / Γ(2), dx. Now, we need to do this integration. 

So, let's see that Γ(2) is nothing but an integer. We know that Γ(l + 1) = l!, so Γ(2) = 1!, 

which is 1. So, this comes out as 1. 

So, now this is a constant, 1/10,000^2, and then we have to do this integration from 10,000 

to ∞: x^(2 - 1), which is x, e^(-x/10,000), dx. So, we have to do this integration. If we can 

simplify, let’s do that. So, let’s set z = x/10,000. So, x = 10,000 * z, and dx = 10,000 dz. 



When x is at the limit of 10,000, z = 1. So, this is nothing but 1/10,000^2. When x is 10,000, 

z = 1, and when x → ∞, z also → ∞. Then, x = 10,000 * z. Also, e^(-x/10,000) becomes 

e^(-z), and dx = 10,000 * dz. 

So, the 10,000^2 cancels out. This is now the integral from 1 to ∞ of z * e^(-z), dz. This is 

what we need to find. So, basically, we have simplified the expression. The probability that 

X > 10,000 is the integral from 1 to ∞ of z * e^(-z), dz. 

 

 

 

So, now we can use integration by parts to solve it. Let us take it as z. The integral is -z. 

So, this is the integration of these terms, from 1 to ∞. So then - ∫ from 1 to ∞, derivative of 

z is 1, and integration of e^(-z), - of that. Then this will be dz. 

So, if you put this limit, when z → ∞, this goes to 0. But the limit of z * e^(-z), as z → ∞, 

will be 0. We can use L'Hôpital's rule to find the limit, so it will be 0. Now, at 1, it is just 

1 * e^(-1). So, this is e^(-1). There's another 1, and we are subtracting that. So, that's why 

the - and - give a +, making it e^(-1). 

And now it will be - ∫ from 1 to ∞ of e^(-z). So, this is + ∫ from 1 to ∞ of e^(-z) dz. This 

gives e^(-1) again. Then, we have - e^(-z), and the limit is from 1 to ∞. Similarly, as z → 

∞, this goes to 0, and e^(-1) remains. The - and - give a +. So, it is e^(-1) + e^(-1), which 

is 2 * e^(-1). 

So, basically, this probability is 2 / e. So, this is the probability that on a particular day, the 

bin consumption is more than 10,000 gallons. This is the probability that the stock is 



insufficient on a particular day. So, this is one numerical example we discussed for the 

gamma distribution. It is one of the important distributions. 

 

 

 

Now, we will discuss some other important distributions. One important and useful 

distribution is the normal distribution. A random variable X is called a normal or Gaussian 

random variable with parameters μ and σ² if its probability density function is given by 1 / 

√(2πσ) * e^(- (x - μ)² / (2σ²)). This distribution was first introduced by Gauss. He was a 

scientist and mathematician. 

 

 

For a particular experiment, he found it to be very useful, and then he introduced it. While 

it may look complicated, it is actually very useful. In nature, most of the data follows a 

normal distribution. Even if it doesn't, with some transformation, we often see that when 



the data is large, it can be considered as a normally distributed random variable. So, let's 

discuss this normal distribution and its applications. 

X is said to follow a normal distribution with two parameters. One is μ, which belongs to 

the set of real numbers (ℝ) and can be positive or negative. The other parameter is σ², which 

is the square of a real number. It is always greater than 0. f_X(x) is nothing but 1 / √(2πσ) 

* e^(- (x - μ)² / (2σ²)). It is actually defined for the whole real line, from -∞ to +∞. There's 

nothing else to write, like we did with other density functions where it’s equal to 0 

otherwise. But here, it's defined for the whole real line. 

Now, μ and σ are parameters, and they measure something. For example, if μ = 0, the 

density looks like this. If the variance, σ², = 1, then the curve will be symmetric around 0. 

It will look like a mirror image—on the left side, it will be very similar to the right side. 

So, this axis will represent the mode as well. So, μ will be the mean of this random variable, 

and σ² will be the variance of this random variable. 

Now, if you change the mean, suppose μ = 5, then the curve will look like this. Although 

it is not correctly drawn, it will still be symmetric and have its maximum value, with 

symmetry around this line. So, suppose μ = 5 with some variance. If we change the 

variance—say σ² > 1—then the curve will be more flat, and if σ² < 1, it will become steeper. 

The area under this density function curve will be equal to 1. 

So, if the variability is less, the height of the curve will increase, and whenever the 

variability is greater, the height will decrease, making it flatter. Now, we want to check 

whether this is a probability density function. How is it? Well, it’s always greater than or 

equal to 0 because e to the power of a square term is always positive. This is also a constant. 

Now, we want to see how it is a probability density function. 

 



So, a probability density function is always greater than or equal to 0. We need to check 

whether the integral from -∞ to +∞ of f_X(x) dx = 1 or not. So, we need to evaluate the 

integral from -∞ to +∞ of 1 / √(2πσ) * e^(- (x - μ)² / (2σ²)) dx. Now, how do we do this 

integration? Now, you can see that we will use some properties of the gamma function as 

well. 

Now, it’s okay. We will take some transformation first. Let’s take this transformation: z = 

(x - μ) / σ. So, then x can be written as σz + μ. So, then dx = σ dz, and the limits do not 

change because when x → -∞, z also → -∞, and when x → +∞, z also → +∞. So, this 

becomes the integral from -∞ to +∞ of 1 / √(2πσ) * e^(- z² / 2) * σ dz. 

The σ cancels out, so it becomes 1 / √(2π). This gives us e^(- z² / 2). This is equivalent to 

1 / √(2π) * ∫ from -∞ to +∞ of e^(- z² / 2) dz. Now, it is an even function. So, you know 

what an even function is. 

Suppose f is a function from ℝ to ℝ. Then, f is called an even function if f(-x) = f(x), and 

it is called an odd function if f(-x) = -f(x). Now, in this case, we see that it is an even 

function because if you take -z, the function does not change. It is the same as e^(- z² / 2). 

Now, for an even function, we know that if f is even, then the integral from -∞ to +∞ of 

f(x) dx can be written as 2 * ∫ from 0 to +∞ of f(x) dx. If f is an odd function, then the 

integral from -∞ to +∞ of f(x) dx = 0. You can check these details as part of your 

mathematics courses. 

Since it’s an even function, we can write this expression as 1 / √(2π) * 2 * ∫ from 0 to +∞ 

of e^(- z² / 2) dz. Now, we’ll calculate the resulting value. This simplifies to 2 / √(2π), 

which equals √2 / π, multiplied by the integral from 0 to +∞ of e^(- z² / 2) dz. 

Now, we will find out the values for this expression, the integral from 0 to +∞ of e^(- z² / 

2) dz. We’ll use a transformation to get it into a form similar to the gamma function. The 

gamma function, Γ(α), is defined by the integral from 0 to +∞ of e^(-x) * x^(α - 1) dx. This 

is the gamma function. We want to express this in a form that allows us to use the gamma 

function. 

 



 

 

From other results, we know that Γ(α + 1) = α * Γ(α). If α is an integer, say l as a natural 

number, then Γ(l + 1) = l!. We also know that Γ(1/2) = √π. We have discussed these details 

in previous lectures, and now we will use this information here. Now, to have the gamma 

function in the e^(-x) form, we will take a transformation. 

So, for e^(- z² / 2), we set t = z² / 2. Then, z² = 2t. Since z is positive and ranges from 0 to 

+∞, we have z = √(2t). Then, if you take the derivative, what will be dz? dz = √2 / 2√t dt. 

Because the derivative will be 1/2, this becomes dt. So, this is equal to what we will get, 

and we also need to determine the limit. So, you can see that when z → 0, t → 0, and when 

z → +∞, t → +∞. That's why the limit is from 0 to +∞. We have e^(- z² / 2), which becomes 

e^(-t). 

I made a small mistake earlier, but it's fine now. This is nothing but dz. So, dz = √2 / 2 * 

(1 / √t) * dt. Simplifying this, we get 1 / √2 * ∫ from 0 to +∞ of t^(-1/2) * e^(-t) dt. So, this 

looks the same; you just need to find what the power should be written as, which is α - 1. 

So, this becomes 1 / √2 * ∫ from 0 to +∞ of t^(-1/2) * e^(-t) dt. This now looks very similar 

to the formula for Γ, so it is Γ(1/2) * 1 / √2 * Γ(1/2). So, Γ(1/2) is something we have 

already mentioned; we did not prove it, but it is part of the mathematics you have already 

learned in integral calculus. Γ(1/2) = √π. So, this becomes √π / √2. 

Now, we will replace this value here: √π / √2. As you can see, this is √2 / √π, and then this 

is √π / √2, which simplifies to 1. So, that is why this is a probability density function. 



Now, we will find the mean and variance of the random variable. Some of the results we 

can see here. Suppose X is a normally distributed random variable with mean μ and 

variance σ². 

 

 

 

We represent this as X having a normal distribution with mean μ and variance σ². Now, if 

μ = 0 and σ² = 1, X has a normal distribution with mean 0 and variance 1. This is known 

as the standard normal random variable, or standard normal variate. 

So, now if you want to find the cumulative distribution function (CDF) of a normal 

distribution, you can see that f(x) is the probability that X ≤ x. So, it's nothing but the 

integral from -∞ to x of f(x) dt. 

So, for X being a normal distribution, suppose X has a normal distribution with mean μ 

and variance σ², then we are finding the cumulative distribution function. This is nothing 

but the integral from -∞ to x of (1 / √(2πσ)) * e^(- (x - μ)² / (2σ²)) dt. So, basically, it is (t - 

μ)² / σ², and the integral becomes (t - μ)² / (2σ²) dt. 

Now, regardless of the values of μ and σ², this integral is an improper integral and is 

intractable. You cannot easily find a specific form of the integration or compute the value 

directly. One method is to compute it numerically, which means using computational 

techniques. However, this approach is time-consuming. 

For a standard normal variate, when μ = 0 and σ² = 1, this probability is given in a table, 

which we will discuss. Then, we can use some kind of transformation to find the probability 

of any normal variate. This transformation is as follows. 



If X is normally distributed with mean μ and variance σ², then Z is obtained by subtracting 

μ and dividing by σ. This transformation will result in a standard normal distribution with 

mean 0 and variance 1. 

So, this kind of transformation is useful because, if you want to find the cumulative 

distribution function, for example, the probability that X ≤ x, you can rewrite it as the 

probability that (X - μ) / σ ≤ (x - μ) / σ. So, this is nothing but Z. So, the probability that Z 

≤ (x - μ) / σ. 

So, then, because you know the probability with respect to Z, you can find it. The 

probability from the table—so, we will discuss this in detail, how we can use it. Some of 

these properties will be discussed in general. Let’s now find the mean of a normal 

distribution. 

 

 


