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Properties of Normal Distributions 

 

Let X be a normally distributed random variable with mean μ and variance σ², then the 

probability density function is given by f_X(x) = (1 / √(2πσ)) * e^(-(x - μ)² / (2σ²)). 

What is the mean (expected value) of X? Let X be a normally distributed random variable 

with mean μ and variance σ². The probability density function is given by f_X(x) = (1 / 

√(2πσ)) * e^(-(x - μ)² / (2σ²)). 

What is the mean, or expected value, of X? μ' = ∫ from -∞ to +∞ of x * f_X(x) dx. 

So, this is the formula we know. This is nothing but ∫ from -∞ to +∞ of x * f_X(x). Then, 

we put (1 / √(2πσ)) * e^(-(x - μ)² / (2σ²)) dx. 

Now, we have to solve this integral. So, first, we will take a similar type of transformation. 

The transformation is where we take z = (x - μ) / σ. So, we have z = (x - μ) / σ. So, x = σz 

+ μ, and dx = σ dz. Now, as x → -∞, z → -∞ because σ is positive. So, as x → +∞, z → 

+∞. 

Then, what is x? x = σz + μ, and (1 / √(2πσ)) is constant. e^(-(x - μ) / σ) is z, so (x - μ)² / σ² 

= z² / 2. Then, dz = σ dz. So, the σ cancels out here. 

Now, what have we found? We need to find these things. So, it is nothing but (1 / √(2πσ)). 

This is (1 / √(2π)), and the integral goes from -∞ to +∞. Then we have σ, σz, so we take σ 

outside. This is σ / √(2π), times z * e^(-z² / 2) dz. 

The remaining part is from -∞ to +∞, μ * (1 / √(2π)) * e^(-z² / 2) dz. 

So, now, what we have is the simplification we found because it is σz + μ. So, σ * z * e^(-

z² / 2) dz, minus e^(+∞), (1 / √(2π)). 



Now, you can see that this is an even function, and this is an odd function. So, the product 

of an odd and even function is an odd function. So, that’s why it is an odd function. 

For this odd function, we discussed that the integral will be equal to 0. Specifically, this 

integral from -∞ to +∞ of f_X(x) dx will be equal to 0. So, what did we find? This value 

will be 0.What will be the value for this function? 

So, let us see what the value will be. We have already computed that whenever X is 

normally distributed with mean μ and variance σ², and f_X(x) is the density function, the 

integral from -∞ to +∞ of f_X(x) dx = 1. 

This implies that ∫ from -∞ to +∞ of f_X(x) = (1 / √(2πσ)) * e^(-(x - μ)² / (2σ²)) dx = 1. 

Note that this is true for any real number μ and any value of σ > 0. For example, if μ = 0 

and σ = 1, it will still hold true. 

 

 

 

In that case, we find that (1 / √(2π)) * e^(-x² / 2) dx = 1. This is simply the density of the 

standard normal variate. Here, you can see that this is the integral from -∞ to +∞ of (1 / 

√(2π)) * e^(-z² / 2) dz. So, that is why this value is equal to 1. Hence, this is simply μ * 1, 

which equals μ. 

So, the value is μ. Therefore, for a normally distributed X with mean μ and variance σ², the 

expected value of X is μ. μ is the parameter that represents the mean of this random 

variable. Next, we will find the variance of this random variable. For convenience, we often 

use the variance formula. 



 

 

 

You can remember that the variance of X, denoted as σ²_X, is simply the variance of X. 

We use the expected value of (X - μ)², μ₁'. Actually, μ₁' is nothing but μ. We found that this 

parameter is μ. So, this is μ₂' - μ₁'². 

You can either find μ₂' and then subtract it, but since this density function contains terms 

like (x - μ)², it’s easier this way. So, that’s why it may be convenient to use this formula 

directly. Let’s find that. σ²_X, the variance of X, is nothing but the expected value of (X - 

μ₁')². Now, μ₁' is μ, as we’ve already found. Now, we want to find the expected value of (X 

- μ)². 

 

 

 



So, what is the formula? It is nothing but the integral from -∞ to +∞ of (x - μ)² * f_X(x) 

dx. This is the same as the integral from -∞ to +∞ of (x - μ)² * (1 / √(2πσ)) * e^(- (x - μ)² / 

2σ²) dx. This may be helpful. 

Let’s see; if it’s not helpful, then we will use the previous formula. First, we will find μ₂' 

because in the density function, there is also the (x - μ)² term. That’s why I thought this 

integration might be helpful if we can find it directly. So, let’s do the same transformation 

again. The transformation is z = (x - μ) / σ, which implies that x = σz + μ. 

Then, dx = σ dz. So, this is equal to the integral from -∞ to +∞ because z goes to -∞ as x 

goes to -∞, and z goes to +∞ as x goes to +∞. Now, (x - μ)² is simply σz. So, (x - μ)² = σ²z². 

So, this is nothing but σ²z² * (1 / √(2πσ)). 

Then, we have (1 / √(2πσ)) * e^(- (σ * (x - μ)) / σ)² / 2, and then dx = σ dz. So, the σ terms 

cancel out. Now, what have we found? It is nothing but σ² * σ² / √(2π) * ∫ from -∞ to +∞ 

of z² * e^(-z² / 2) dz. 

So, what we have found is σ⁴ / √(2π) * ∫ from -∞ to +∞ of z² * e^(-z² / 2) dz. Now, we want 

to find the value of this integral. What will the value be? Let us find that out. So, the integral 

from -∞ to +∞ of z² * e^(-z² / 2) dz. Now, you can see that this is an even function, and this 

is also an even function. When multiplied, the result will be an even function. 

 

  

 

This can be written as 2 * ∫ from 0 to ∞ of z² * e^(-z² / 2) dz. Now, how will we do this 

integration? Again, we will use the gamma function, with the help of gamma. So, Γ(α) is 



nothing but ∫ from 0 to ∞ of x^(α - 1) * e^(-x) dx. Now, here you can see that e^(-z² / 2) is 

present, so we will take this. 

So, all these formulas we know: Γ(α + 1) = α * Γ(α), and for an integer natural number l, 

Γ(l + 1) = l!. Also, Γ(1/2) = √π. We will use these results here. So, now, to get it into a 

gamma function form, what we will do is take the transformation z² / 2 = t. So, z² = 2t, and 

then z = √(2t). 

Therefore, dz = (1 / √2) * (1 / √t) dt. So, we get 1 / √2. So, this is 1 / √(2t), and this is dt. I 

think this is fine. Now, we will substitute, and the limits do not change. When z → 0, t → 

0, and when z → ∞, t → ∞. So, this becomes 2 * ∫ from 0 to ∞. Now, z² = 2t. So, that is 

why, from here, z² = 2t. This is nothing but 2t. 

e^(-z² / 2) becomes e^(-t), and then dz = (1 / √(2t)) dt. So, that’s the integration we are 

finding. Now, you can see that this is coming out as a gamma function form with e^(-t). 

Now, here, 2 * 2 / √2 becomes 2√2. Then, √2 * √2 simplifies further. 

This leads to the integral from 0 to ∞ of t * (1 - 1/2), which equals 1/2. So, t = 1. What we 

need to find is something - 1, which results in 2. Finally, we have 1/2 because t is divided 

by √2 * √t. So, this is nothing but t * (1 / 2) * e^(-t) dt. 

We have to write this in a form like something α - 1. This becomes 2√2 * ∫ from 0 to ∞ of 

t^(1/2), which we can write as t^(3/2 - 1), so that it matches the desired form with e^(-t) dt. 

Now, comparing this with the gamma function, this is nothing but Γ(3/2). Therefore, the 

result is 2√2 * Γ(3/2). Now we will use this formula: Γ(α + 1) = α * Γ(α). 

Here, 3/2 can be written as 1 + 1/2. That is why we have 2√2 * (1 / 2) * Γ(1/2), because α 

= 3/2. So, α + 1 becomes 3/2, and α = 1/2. So, Γ(α + 1) = α * Γ(α). So, Γ(3/2) is nothing 

but (1 / 2) * Γ(1/2). 



 

 

We have used that here, so 1 / 2 is canceled, leaving √2 * Γ(1 / 2). Since Γ(1 / 2) = √π, this 

simplifies to √(2π). Hence, you see that from here, this value we have computed is nothing 

but √(2π). So, this is σ² / √(2π) * √(2π). This simplifies to σ². 

So, hence we learn about the normal distribution function, its probability density function, 

and we check that it is a density function, integrating to 1. We also found its mean and 

variance. The parameters μ and σ² are very significant. μ is nothing but the mean of this 

random variable, and σ² is nothing but the variance of this random variable. Next, we will 

discuss some important properties of the random variable. 

 

 

 

Let us also discuss some applications of the normal distribution. There are many 

applications of the normal distribution, as most data sets found in nature follow a normal 



distribution. For example, if you look at the height distribution, you'll see that the frequency 

or probability is less for heights < 5 feet. Similarly, for heights > 6 feet, the frequency or 

probability will also be less. But in the middle, around 5.5 or 5.7 feet, the number or 

proportion of people will be higher. 

 

So, it looks like it increases and then decreases, showing symmetry around some point. 

Similarly, if you look at graphs for IQ, shoe size, birth weight, income distribution, stock 

market data, or student reports—like when grading students and analyzing their 

performance based on marks—you will see that, when the data is large, it tends to follow 

a normal distribution. So, this is very important because many distributions encountered in 

practice, such as the Poisson distribution, binomial distribution, hypergeometric 

distribution, and exponential distribution, can be approximated by a normal distribution. 

Even if a variable is not normally distributed, it can often be transformed into a normal 

form through a simple transformation. Additionally, many distributions of sample statistics 

are important. 

 

 

For example, later on, we will discuss the sampling distribution in statistical inference, 

which will be very important. So, for sampling distributions, we will look at the distribution 

of X̄ (the sample mean) and the distribution of the sample variance (S²). Most of the sample 

variances will follow the square of a normal distribution, which is known as the chi-square 

distribution. So, these are all normally distributed random variables when the sample size 

is large. Now, one important property is that if X₁, X₂, ..., Xn are independently normally 

distributed random variables, then their linear combination will also be a normally 

distributed random variable. 



 

 

 

So, let us write that X₁, X₂, ..., Xn are independent random variables, with each Xi having 

a normal distribution with mean μᵢ and variance σᵢ². Now, if you take the sum of the linear 

combination, like Y = α₁X₁ + α₂X₂ + ... + αnXn. So, we have taken n random variables, 

which are independent. Now, this will also have a normal distribution with mean μᵧ and 

variance σᵧ². So, we will not focus on that proof right now. 

Later, we will learn about other important topics, such as the moment-generating function. 

The moment-generating function is simply the transformation of a random variable. We 

will learn how to find the distribution of a transformation of a random variable, and then 

we can determine this distribution. Now, if we assume that the linear combination follows 

a normal distribution, then the mean will be μᵧ and the variance will be σᵧ². Then you can 

easily find the mean and σᵧ². 

The mean of Y, μᵧ, is nothing but the expected value of Y. The expected value of Y is α₁X₁ 

+ α₂X₂ + ... + αnXn. We have discussed that some of the properties involve linear 



transformation and expansion. This is nothing but the expected value being a linear 

transformation. So, this can be written as α₁E[X₁] + α₂E[X₂] + ... + αnE[Xn]. 

Then, because the expected value of X₁ and the expected value of X₂ are already known, 

since Xi is normally distributed, we can use that information. The expected value of Xi is 

nothing but μᵢ, and the variance of Xi is σᵢ². So, we will use that here. This gives α₁μ₁ + 

α₂μ₂ + ... + αnμn. This is the mean of this normal distribution. 

Now, what will be the variance of this normal distribution Y? σᵧ² will be the variance of Y. 

This is nothing but the variance of α₁X₁ + α₂X₂ + ... + αnXn. By another property, since 

these are independent random variables, the variance can be written as the variance of α₁X₁ 

+ the variance of α₂X₂ + ... + the variance of αnXn. Because they are independently 

distributed random variables, that is why you can write this. 

Otherwise, there would be some covariance terms, but we will discuss that whenever we 

learn about bivariate random variables. Here, because of independence, this is the formula. 

Now, as we have already discussed, the variance of a constant multiplied by a random 

variable will involve the square of the constant. This results in α₁² * Var(X₁) + α₂² * Var(X₂) 

+ ... + αn² * Var(Xn). The variance of X₁ is nothing but σ₁². 

This gives α₁² * σ₁² + α₂² * σ₂² + ... + αn² * σn². This represents the variance of this random 

variable, which is one of its properties. Now, from these properties, we can see that this is 

a general property. Next, it’s very important. The next property is that if X is normally 

distributed with mean μ and variance σ², then if you take this transformation, Z = (X - μ) / 

σ, Z follows a standard normal distribution. 

 

  



 

This means that the expected value of Z is 0, and the variance of Z is 1. So, Z follows a 

normal distribution with mean 0 and variance 1, or Z ~ N(0, 1). So, if X ~ N(μ, σ²), and 

you take the transformation Z = (X - μ) / σ, it’s still a linear transformation. Because it’s 

(1/σ) * (X - μ), it’s a linear transformation. As we discussed, any linear transformation of 

a normal distribution is again a normal distribution. 

 

 

So, we can say that Z is also a normal distribution. Now, we want to find what the mean 

and variance will be. So, it will be a normal distribution with mean μ_Z and variance σ²_Z. 

Now, we want to find what the mean of this random variable and the variance of this 

random variable will be. The mean of this random variable, μ_Z, is nothing but the 

expected value of Z. So, this is the expected value of (X - μ) / σ. 

 

So, since σ is a constant, we have (1/σ) * E(X - μ). Now, E(X - μ) is E(X) - E(μ). Since μ 

is a constant, we have already discussed that E(X) is nothing but μ. And since μ is a 

constant, this is again μ. Therefore, this simplifies to 0. 

 

Now, what will be σ²_Z? What will be the variance of Z? So, this is the variance of Z. This 

is nothing but the variance of (X - μ) / σ. Since σ is a constant, we have already discussed 

that it will be (1/σ²) * Var(X - μ). Now, this is another exercise. 

 

You may observe that for any random variable, another property is that if you take the 



transformation X + c, where c is a constant, the variance does not change. For any c ∈ ℝ, 

Var(X + c) = Var(X). So, that is why μ is a real number. So, it is X - c. This is nothing but 

Var(X) / σ². 

 

Now, what is the variance of X? The variance of X is simply the parameter σ². So, this 

becomes σ² / σ², which equals 1. Therefore, if you take the transformation where Z = (X - 

μ) / σ, it results in a standard normal distribution, which is written as N(0, 1). This is the 

standard normal variate. 

 

Now, suppose you want to find the probability distribution function or any probability 

related to a normal distribution function, but the integration is not tractable. For example, 

suppose X ~ N(μ, σ²). Now, you want to find the probability that X > c₁ and X ≤ c₂. So, 

what will the probability be? This probability will be the integral from c₁ to c₂ of f(x) dx. 

 

 

 

So, c₁ and c₂ can be anything. For example, you can take c₁ as -∞, and c₂ can be any real 

number, or it can tend to ∞ as well. So, both of them can be real numbers, any values like 

that. So, then this probability will be nothing but the integral from c₁ to c₂ of (1 / √(2πσ)) * 

e^(-(x - μ)² / (2σ²)) dx. Now, you can see that this is intractable because the integration is 

not straightforward. 

 

We cannot compute this integration. So, up to this point, we can do the calculations, but 



after that, we can't find any closed-form value as a real number. So, we can either do it 

numerically or apply a transformation. For instance, if we take the transformation, where 

z = (x - μ) / σ, we know that this transformation results in a normal distribution with mean 

0 and variance 1. So, here you can apply this transformation. 

 

Let x = σz + μ. Then, dx = σ dz. Now, what happens to the limits? The limits change as 

follows: when x = c₁, z = (c₁ - μ) / σ. Similarly, when x = c₂, z = (c₂ - μ) / σ. 

So, the assumption here is that c₁ < c₂. The expression becomes (1 / √(2πσ)) * e^(-z² / 2σ) 

dz. The σ cancels out. So, we need to evaluate this integral, which is from (c₁ - μ) / σ to (c₂ 

- μ) / σ, with the integrand (1 / √(2π)) * e^(-z² / 2) dz. So, this is actually the density of a 

standard normal variate. 

 

 


