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Examples of Conditional Distribution Function and Bivariate Random Variable 

 

X has an exponential distribution with parameter λ, and B is the event taking values 

between 1 and ∞. Now, we need to find the conditional probability density function. First, 

we will determine the conditional cumulative distribution function (CDF). The conditional 

cumulative distribution function is given by P(X ≤ x | B) = P(X ≤ x ∩ B) / P(B). 

First, we need to find P(B). Since X is an exponential random variable, we know the 

probability density function of X. The probability density function of X is given by f_X(x) 

= λ * e^(-λx) for x > 0 and 0 otherwise. Now, to find P(B), we calculate the probability that 

the random variable takes values between 1 and ∞. Since B is between 1 and ∞, this is the 

integral from 1 to ∞ of λ * e^(-λx). Since this is the probability density function, we are 

integrating over B. The result of the integration is ∫(1 to ∞) λ * e^(-λx) dx, which evaluates 

to [ -e^(-λx) ] from 1 to ∞. 

At ∞, the value is 0, and λ cancels out. At 1, the result is e^(-λ * 1) = 1/e. Therefore, we 

have found P(B). Now, what is the probability of X ≤ x, given the intersection with B? 

Note that X is a positive random variable, meaning it takes only positive values. 

 



Therefore, X is a positive random variable, X > 0. Now, B is the set from 1 to ∞. So, B = 

[1, ∞), and X can take any value. This probability will be 0 if X < 1, because when X ∈ (0, 

1), the intersection is empty. We can express this in another step. 

 

This is the probability P(X ≤ x | X ∩ B). Since B = [1, ∞), this probability is equal to 0 if 

X ≤ 1 and X > 0. If X ∈ (0, 1), the intersection is the empty set, so the probability will be 

0. For example, if X = 0.5, the intersection between X and B will be empty. Therefore, for 

any X ∈ (0, 1), the intersection is the null set, and P = 0. 

 

Now, what will be the case when X > 1 and X < ∞? We can compute this value. So, if X > 

1, what will the intersection be? The intersection is when X ∈ [1, x], and the interval from 

1 to ∞. This is the intersection of the interval [1, x] with [1, ∞). 

 

This gives us the interval [1, x], where x > 1. Therefore, the intersection is P(1 ≤ X ≤ x). 

This probability is simply the integral from 1 to x of f_X(t) dt, where x ∈ (1, ∞). Let's find 

this probability first. I hope you have understood it. It is now clear that whenever x > 1, the 

intersection will be the interval [1, x], because it is the intersection of [1, ∞) and [0, x]. 

 

 

 

So, now we will erase these steps and find the probability. This probability is nothing but 

P(1 ≤ X ≤ x). This probability is the integral from 1 to x, not from 1 to ∞, of f_X(x) dx. 

Just take a different variable, t, and integrate with respect to t. This is simply the integral 

from 1 to x of λ * e^(-λt) dt. 



So, this simplifies to λ * e^(-λt), evaluated from 1 to x. So, basically, the λ cancels out, and 

this becomes e^(-λ * 1). There's a minus here, so that's why it becomes just -1. It's the result 

of -λ * x. One minute, I think t = 1, but because there's a λ here, it’s λ * 1. 

So, this is e^(-λ), and then e^(-λ * x). So, I think it's fine now. This is the probability. I just 

remembered that I made a mistake earlier. e^(-λx) goes to 0 as x → ∞, and when x = 1, it 

becomes e^(-λ). 

Sorry about that. So, this is e^(-λ). This is the probability of B. Finally, we will find the 

conditional probability cumulative distribution function. Hence, the conditional CDF is 

given by this, which is simply f_X(x | B). 

 

 

 

What did we find? So, we found that this is simply P(X ≤ x ∩ B) / P(B), which we have 

already found. This is true whenever x ≤ 1. Sorry, we have already determined that this 

probability is for x ≤ 1. So, even if you take a negative number, it will always be 0. 

Whatever the number is, it will be 0. That’s why we can write -∞, as you need to define 

the entire real line. So, whenever x is from -∞ to 1, this probability is 0. The upper part is 

0. However, when x > 1 and x < ∞, the probability of B will be e^(-λ), which we just 

checked. 

The probability of B is e^(-λ). What is the probability of the upper part? So, we just found 

this probability. It is the same as this. This value is e^(-λ) - e^(-λx). 

 



So, it is e^(-λ) * (e^(-λx) - 1). Finally, what did we get? So, this is 0 whenever x ≤ 1, and 

then it is 1 - e^(-λ) * (e^(-λx) - 1) whenever x > 1 and x < ∞. This is the conditional 

cumulative distribution function (CDF) for X given B. 

Now, the question asks what the conditional probability density function (PDF) of X given 

B will be. So, what do we need to do now? We have to just differentiate it with respect to 

x. So, the conditional probability density function of X given B is nothing but the derivative 

of the conditional cumulative distribution function given B. So, we can see that this 

distribution function is 0 when x ≤ 1 or x < -∞. Now, if you take the derivative with respect 

to x, this is nothing but λ * e^(-λx). 

 

 

 

So, we can see that this distribution function is 0 when x ≤ 1 or x > -∞. Now, if you take 

the derivative with respect to x, this is nothing but λ * e^(-λx). So, this is finally the 

conditional probability density function of X given B. So, this is one example of how to 

find the conditional probability density function given event B. Now, next, we will discuss 

the conditional probability mass function. 



 

 

 

For this example, whenever X is a binomial distribution with parameters n and p, and B = 

{1, 2, ..., n}, we will find the conditional probability mass function of X given B. Next, we 

will discuss this. Now, we will discuss the conditional probability mass function with an 

example. The conditional probability mass function for a given event B is as follows: Let 

X be a random variable with a binomial distribution with parameters n and p. Let B be the 

event that X takes values from 1 to n. 

 

We need to find the conditional probability mass function of X given B. So, we have 

already discussed the conditional probability density function. To summarize, when we 

compute the conditional probability density function, we first need to find the cumulative 

distribution function (CDF). Once we have the CDF, we take its derivative to obtain the 

probability density function (PDF). Now, for the discrete case, the cumulative distribution 

function may not be differentiable for all values of x. 



 

 

In that case, we discuss the probability mass function (PMF). Here, we will directly find 

the conditional probability mass function. So, recall that the conditional probability mass 

function for a given random variable is given by the conditional probability mass function. 

The conditional probability mass function (PMF) is the conditional probability mass 

function of a discrete random variable. Basically, for a discrete random variable X given 

B, where B = {1, 2, ..., n}, so here, B is given as {1, 2, ..., n}. 

 

Let us discuss, first, for any event B. The conditional probability of X given B is the 

probability that X = xk and event B occurs, divided by the probability of event B. Now, for 

this example, X is binomial with parameters n and p, and B = {1, 2, 3, ..., n}. So, X has a 

binomial distribution with parameters n and p, where n is a natural number and p is a 

probability between 0 and 1. We discussed the binomial distribution earlier. 

Now, how can we find the probability mass function when B is given as the set {1, 2, ..., 

n}? First, let's find the probability mass function of a binomial random variable. This is the 

probability mass function of a binomial distribution. The probability mass function of X, 

which is a binomial random variable, is as follows. So, we write the probability mass 

function of X as follows. 

 

The value of X can range from 0 to n because it follows a binomial distribution. This means 

that the probability of X taking a particular value is determined by the binomial distribution 

with parameters n and p. So, for X = x, when x ∈ {0, 1, 2, ..., n}, this is equal to: 

P(X = x) = C(n, x) * p^x * (1 - p)^(n - x), for x ∈ {0, 1, 2, ..., n}, 

and 0 otherwise. 

 

So, we now know the probability mass function. Now, we use this formula to find, by this 

definition, the conditional probability mass function of X given B. 



 

 

So now, how can we find the conditional probability mass function of X given B? So now, 

what is xk? xk can take values from 0 to n. So, we write it as P(X = x | B). This is nothing 

but P(X = x ∩ B) / P(B). 

 

First, we will find P(B). So, P(B) is nothing but the summation of probabilities. Since B is 

given as {1, 2, ..., n}, P(B) is the summation, because it is a discrete random variable. It 

can take values from 1 to n, so the summation is for x = 1 to n, and it represents P(X = x). 

So, this is P(B) because it is the union of the probabilities: P(X = 1) + P(X = 2) + ... + P(X 

= n). 

 

Since it is a binomial random variable, we know that the summation of the probabilities, 

from X = 0 to n, has already been shown. For binomial distribution, the PMF of a binomial 

random variable should be equal to 1. This means that P(X = 1 to n), when summed, is 

equal to 1. So, this is nothing but P(X = 0) + Σ P(X = x) for x = 1 to n. Since the total 

probability for X from 0 to n is 1, this is P(X = 0) + Σ P(X = x) for x = 1 to n. 

This is equal to 1, which implies that Σ P(X = x) for x = 1 to n = 1 - P(X = 0). So, what is 

P(X = 0)? P(X = 0) is just P(X = 0), which is (1 - p)^n. So, let q = 1 - p. This is equal to 1 

- (1 - p)^n. 

 

Therefore, this is simply q^n. So, this is equal to 1 - q^n. Now, the probability of X = x, as 

we found, is x = 1 to n, P(X = x). This is nothing but 1 - q^n, where q = 1 - p. Now, we 

found this value as 1 - q^n. 



 

We’ve found P(B). Now, we need to find P(X = x ∩ B). So, this is for x = 1 to n. Essentially, 

it’s P(X = x ∩ {1, 2, ..., n}). Note that x can be any value from 0 to n, because X follows a 

binomial distribution. 

 

So, this intersection will be a null set if x = 0, because 0 does not belong to the set {1, 2, 

..., n}. Therefore, P(X = x ∩ B) = 0 if x = 0. Otherwise, for any other value of x, such as x 

= 1 or x = 2, the intersection will be a subset of {1, 2, ..., n}, because this set is a superset 

of that. So, if x belongs to the set, then for any other value of x from 1 to n, this is simply 

P(X = x). Because this is nothing but a subset of this random variable, the probability of X 

= x is something we already know. 

 

 

 

So, I will write here. Let us move to the next page. Hence, the probability that X = x given 

B can be written as 0 when X = 0. For any other values, it is also 0. However, because X 

has a non-zero probability at X, this intersection is 0 when X ∈ {1, 2, ..., n}. So, this 

probability is nothing but P(X = x). 

 

So, we can write it as 0 when X = 0. P(X = x) is already known to be the PMF of the 

binomial random variable, which is written as (n choose x) * p^x * (1 - p)^(n - x). So, this 

is (n choose x) * p^x * (1 - p)^(n - x). This holds when x ∈ {1, 2, ..., n}; for any other value, 

it is actually 0. So, basically, we can combine these things. 



 

This is equal to (n choose x) * p^x * (1 - p)^(n - x) if x ∈ {1, 2, ..., n}; otherwise, for any 

other values of x, this is equal to 0. So now, finally, what is the probability mass function? 

Hence, the conditional probability mass function of X given B is P(X = x | B). So, P(X = x 

| B) = P(X = x ∩ B) / P(B). 

 

This is non-zero when x ∈ {1, 2, ..., n}. So, this is (n choose x) * p^x * (1 - p)^(n - x) / 

P(B), which we found to be 1 - q^n. So, P(B) = 1 - q^n, where q = 1 - p. This is 1 - q^n 

whenever x ∈ {1, 2, ..., n}; it is equal to 0 otherwise. So, these are the two examples we 

discussed here: one using the conditional probability mass function to find the conditional 

probability mass function, and the other using the conditional probability density function. 

With this, we conclude the discussion of univariate random variables. Next, we will discuss 

more later as needed. Some of the basic concepts and examples have already been covered, 

including important distributions and their numerical examples. Now, we will move on to 

multivariate random variables, starting with bivariate random variables. 

 


