
PROBABILITY THEORY FOR DATA SCIENCE 

Prof. Ishapathik Das 

Department of Mathematics and Statistics 

Indian Institute of Technology Tirupati 

Week - 06 

Lecture - 31 

Example of Bivariate Random Variable 

 

So, we can define different random variables on the same sample space. Let us discuss an 

example. Consider the random experiment of tossing a coin twice. Basically, you have the 

same coin, and here we didn't mention the probability of getting a head. So, we assume 

P(Head) = 1/2. 

 

Essentially, we assume it is an unbiased or fair coin. Now, what will the sample space be? 

In this case, the sample space S = {(Head, Head), (Head, Tail), (Tail, Head), (Tail, Tail)}. 

We are tossing a coin two times. So, that means we will get two observations for every run 

of this experiment. 

 

It could be both heads, one head and one tail, or one tail and one head, or both tails. So, the 

possible outcomes are (Head, Head), (Head, Tail), (Tail, Head), or (Tail, Tail). This is the 

sample space, which includes all possible outcomes. In each run, we do not know which 

outcome will appear. So, now, let us define a random variable X. 

 

It will be a measurable function from S to ℝ, defined by X(ω) = number of heads observed 

or obtained, where ω ∈ S. So, basically, whenever tossing a coin, we obtain X as the number 

of heads. For example, if we get two heads, then X(Head, Head) = 2 because the number 

of heads is 2. X(Head, Tail) = 1 because there is only one head. X(Tail, Head) = 1, and 

X(Tail, Tail) = 0, as there are no heads. 

 

Another random variable we can define is Y, from S to ℝ. This is defined by Y(ω) = number 



of tails observed, where ω ∈ S. So, in that case, Y(Head, Head) = 0 because we are talking 

about the number of tails. What is the number of tails? Since two heads are observed, the 

number of tails will be 0. 

 

Y(Head, Tail) = 1. Y(Tail, Head) = 1. And Y(Tail, Tail) = 2. Sorry, I mean for (Head, Tail), 

the number of tails is 1, that's why it's 1. For (Tail, Head), the number of tails is 1, that's 

why it's 1. For (Tail, Tail), the number of tails is 2. 

 

So, this is actually the opposite of X; here, we have to consider the number of tails for this 

random variable. So, we have considered two random variables. Now, we define a bivariate 

random variable. So, let's look at the definition of a bivariate random variable. Let S be the 

sample space of a random experiment. 

 

 

For example, here, S is the sample space. Let's consider this example. So, S = {(Head, 

Head), (Head, Tail), (Tail, Head), (Tail, Tail)}. Now, by the random variable X, suppose 

this is 0, this is 1, this is 2, this is 3, this is -1, -2, -3. Here, this is 1, this is 2, this is 3, and 

so on. Now, X(Head, Head) = 2, so this is okay. I’m just mapping X on the x-axis and this 

on the y-axis. 

 

So, X(Head, Head) = 2. This is 2, which is X(Head, Head). Now, X(Head, Tail) = 1, so 

this will be 1. This is also 1. So, this is X(Head, Tail), Head. 

Now, this is X(Head, Tail). X(Head, Tail) = 1. X(Tail, Head) = 1, and for (Tail, Tail), it is 

0. So, X(Tail, Tail) = 0. Now, what about the random variable Y? For the random variable 



Y, X(Tail, Tail) = 2, so Y(Tail, Tail) = 2. So, this is going here. 

This is Y(Tail, Tail), and both are going to 1 here. This is the Y-axis, and this is 1. This is 

also 1. So, we will represent Y(Tail, Head). This is Y(Tail, Head), and this is Y(Head, 

Tail). 

 

Then, this value will go to 0. Y(Head, Head) will also go to 0. So, this is nothing but 

Y(Head, Head). This is a little complicated in the graph, but we have understood it. Now, 

why are you drawing this graph? Because in this definition, let S be a sample space, and 

I’m going to explain. 

 

Let X and Y be two random variables. Then, the pair (X, Y) is called a bivariate random 

variable, a two-dimensional random variable. If each of X and Y associates a real number, 

then every element of S will be associated with X and Y. So, now we define this random 

variable. Usually, X, like any random variable, is a function from S to ℝ. 

 

 

 

Now, we consider this as a vector. This is denoted by (X, Y), which is a function from S to 

ℝ². This defines a bivariate random variable. A random variable is a measurable function. 

(X, Y) is defined from S to ℝ² by (X, Y)(s). 



 

 

This is a function from S to ℝ², so for every element of S, it will map to ℝ². The value will 

be X(s), Y(s). So, X(s) is a real number and Y(s) is a real number, so this is a vector in ℝ². 

This is called a bivariate random variable. Now, if both random variables are discrete, then 

the random variable (X, Y) is called a discrete bivariate random variable. 

 

If both X and Y are continuous random variables, then (X, Y) is called a bivariate 

continuous random variable. If one of them is discrete and the other is continuous, then it 

is called a mixed bivariate random variable. Now, if we graphically represent this, what is 

the range of X? The range of X is the range of the random variable X, which is {0, 1, 2}. 

What is the range of Y? 

 

The range of Y is {0, 1, 2}. So, if you consider the cross product, that is, if you consider 

ℝₓ × ℝᵧ, this is nothing but it contains 3² elements, which means it will consider 9 elements. 

So, basically, this is (0, 0), one vector. For simplicity, let us denote this as a vector in the 

first bracket, to indicate that this is a vector. But actually, if we properly represent that, we 

usually use the third bracket and this transpose dash. 

 

This is nothing but the row-column vector represented as a column. So, now this is (0, 0), 

(0, 1)ᵀ, then (0, 2)ᵀ, and then (1, 0), (1, 1), (1, 2), and then (2, 0), (2, 1), (2, 2). So, this is 

the range of this random variable. Sorry, the range is not—it is nothing but ℝₓ × ℝᵧ. Now, 

let us again find out what this X, Y is. 



 

So, this is the sample space: head-head, tail-head, head-tail, tail-head, and tail-tail. So now, 

this is 1, this is 2, this is 3, -1, -2, and so on, 1, 2, 3. Now, under this random variable X, 

Y, this function is from S to ℝ². So, how is it? What is the (X, Y) of head-head? This is 

defined by X(head-head), Y(head-head). 

 

So, X(head-head) is nothing but 2, and Y(head-head) is equal to 0 because X(head-head) 

represents the number of heads. Sorry, let me just write this down again. Let us find out 

what (X, Y) of head-head is, one of the elements of S. By definition, this is nothing but 

X(head-head) and Y(head-head). So, X(head-head) is the number of heads obtained, which 

is 2, and Y(head-head) is 0. 

 

Therefore, this is (2, 0). So, basically, this is coming to (2, 0). This point is mapped to this 

point, which is nothing but X, Y of head-head. Now, what is the value of (X, Y) of head-

tail? (X, Y) of head-tail is nothing but X(head-tail) and Y(head-tail) 

 

 

 

So, X(head-tail) = 1, and Y(head-tail) = 1. Similarly, what will be (X, Y) of tail-head? This 

point is X(tail-head), Y(tail-head), which is again (1, 1). Now, if you consider the point 

tail-tail, X(tail-tail) and Y(tail-tail) are 0 and 2, respectively. So, the result is (0, 2). 

 

Now, if you represent this graphically, (X, Y) of head-head and (X, Y) of tail-tail both go 

to the same point, (1, 1). So, here is the point (1, 1). Both head and tail go to the same 



location. This is also true for (X, Y) of head-tail and (X, Y) of tail-head. Now, what will 

be the (X, Y) of tail-tail? 

 

This function, this value, is nothing but (0, 2). So, (0, 2) is here. This is going to this value. 

This is (X, Y) of tail-tail. So, what did we find? 

 

What is the range of this bivariate random variable? The range of this bivariate random 

variable is denoted by ℝₓᵧ. ℝₓᵧ will contain the points: (0, 2), which is one value; (1, 1), and 

another point is (2, 0). However, you can see that ℝₓ × ℝᵧ contains many more points, not 

just the three points like (0, 2), (2, 0), and (2, 2). These three points are part of the range of 

the bivariate random variable. 

 

 

So, ℝₓᵧ may not be the same as ℝₓ × ℝᵧ, but it will always be a subset of the range of ℝₓ × 

ℝᵧ. So, it may sometimes be exactly equal, but most of the time, as we can see from this 

example, it will be a subset of ℝₓ. The range of this bivariate random variable, ℝₓᵧ, will be 

a subset of ℝₓ × ℝᵧ. I hope you have understood the definition of the bivariate random 

variable. Now, let's consider the example we have already discussed: the experiment of 

tossing a fair coin twice. 



 

 

Let X and Y be a bivariate random variable, where X is the number of heads that occur in 

two tosses and Y is the number of tails that occur in the two tosses. What is the range, ℝₓ, 

of X? We have already discussed that the range of X is {0, 1, 2}. Similarly, the range of Y, 

ℝᵧ, is also {0, 1, 2}. We have already discussed and found the range of ℝₓᵧ, which consists 

of the points (0, 2), (1, 1), and (2, 0).  

All these points are in ℝ². Now, the question is: What is the probability that X = 2 and Y = 

0? So, this notation, which we have already discussed, will be explained again. Let us first 

find the probability that X = 2 and Y = 0. As we have already discussed, the notation X = 

2 means all s in the sample space S such that X(s) = 2. 

 

 

Another question is: What does it mean for Y = 0? So, Y = 0 is also known. Now, let's find 

out what those values are. Remember that the sample space contains these four points: S = 



{head-head, head-tail, tail-head, tail-tail}. We are looking for all s ∈ S such that X(s) = 2. 

X(s) = 2 means the number of heads will be 2, which corresponds to the point head-head.  

Now, the next question is what Y = 0. We also know this. This refers to all s ∈ S such that 

Y(s) = 0. So, Y(s) = 0 means the number of tails is 0. Therefore, we are looking for the 

point where the number of tails obtained is 0. This means the point is head-head. So, this 

corresponds to head and head. Now, if you want to define what this means—X = 2, Y = 

0—this is the event corresponding to this, because we already know what the event is. This 

is a subset of S, and it is also a subset of S. 

 So, we already know that it will be a subset of S. But what does this notation mean? This 

notation corresponds to X = 2, which is an event in S, and Y = 0, which is also an event in 

S. The comma means the intersection of these two events. So, we have found that this is 

nothing but head-head, and this is the intersection with head-head again. 

 So, this is simply head-head. So now we can easily find the probability that X = 2 and Y 

= 0. This probability is simply 1/4, because there are four equally likely points, and we 

assume the probability of heads is 1/2, as it's an unbiased coin. So, this is 1/4. So in general, 

we can define this by stating that X = x and Y = y. 

 

 

X is the random variable, and Y is another variable. We can also talk about cases like X ≤ 

x and Y = y, or we can discuss situations like X = x and Y ≤ y. How is it defined? If you 

want to define it, we can define it as an event Ax such that this is equivalent to X = x. How 

is it defined? All s ∈ S such that X(s) = x, and now, Y is another event. 



 It is defined by Y = y, which means all s ∈ S such that Y(s) = y. Small y is a real number. 

So, Bx, Ax, and By are all subsets of S. Therefore, they form an event. This is equivalent 

to the event Ax ∩ By. 

 For simplicity and clarity, we use this notation, or you can directly write it like this. So, 

this corresponds to the event where X = x. For an enumerated random variable, we have 

already discussed that this is an event. Similarly, the intersection where Y = y is another 

event. In the same way, the event X ≤ x ∩ Y = y. Likewise, the event X ≤ x ∩ Y ≤ y. 

 So, we can now talk about this probability, which refers to the probability of this event. 

The probability of this event is what we are focusing on. It is important to understand the 

notation being used here. Once you follow this notation, we can proceed with other 

examples, such as finding the probability that X = 0 and Y = 2.  

So, the probability that X = 0 and Y = 2 is nothing but the probability of the event where 

X = 0 ∩ Y = 2. Now, what is the event when X = 0? X = 0 refers to all s ∈ S such that X(s) 

= 0. This means X(s) = 0 for all s in the sample space. Here, X represents the number of 

heads. So, what is the sample space? 

 The sample space S is already known and consists of: head-head, head-tail, tail-head, and 

tail-tail. So, what are the points in S such that X(s) = 0? This corresponds to tail-tail because 

the number of heads is 0. Tail-tail is the only outcome where the number of heads is 0. 

Now, how do we find Y = 2? It is all s ∈ S such that Y(s) = 2. Here, Y is defined as the 

number of tails. When the number of tails equals 2, the outcome is again tail-tail (T, T). 

 So, this is tail-tail (T, T). Then, X = 0 ∩ Y = 2. In this case, both events are the same. The 

same was true in the previous example as well. Hence, the probability is 1/4. Here too, X 

= 0 and Y = 2. This represents the probability of this event. This event is nothing but, by 

the classical approach, there are four equally likely points, and out of that, one point 

satisfies the condition. So, the probability is 1/4. So, the next example is to find the 

probability of X = 1 and Y = 1. How do we find that? 



 

The probability that X = 1 and Y = 1 is nothing but the probability that X = 1 ∩ Y = 1. We 

have to find the corresponding events, then take the intersection to find the probability. So, 

let's write down what S is. S = {head-head, head-tail, tail-head, tail-tail}. Now, what is X 

= 1? 

 

X = 1 refers to all s ∈ S such that X(s) = 1. This means the number of heads will be 1. So, 

the outcomes where the number of heads is 1 are head-tail and tail-head. Similarly, if you 

consider Y = 1, it refers to all s ∈ S such that Y(s) = 1. In this case, the number of tails will 

be 1, which gives head-tail and tail-head. 

 

In fact, for all the examples, it is the same. So, there is no intersection; it is simply head-

tail and tail-head. Now, what will the probability be? Probability of X = 1 ∩ Y = 1 is 2 out 

of 4 equally likely points, so the probability is 2/4, which simplifies to 1/2. It seems like 

this is always the case. 

 

Now, let's consider the case where we need to find the probability of X = 1 and Y = 0. To 

find this probability, X = 1 corresponds to this event, which is the intersection of X = 1 ∩ 

Y = 0. So, X = 1 corresponds to head-tail and tail-head. Now, what is Y = 0? Y = 0 means 

the number of tails is 0, so this corresponds to the intersection of head-head. 

 

So here you see that not all are the same, and that’s why Y = 0. You can find that Y = 0 

corresponds to all s ∈ S such that Y(s) = 0. Since Y represents the number of tails, Y = 0 

means there are no tails. So, the only outcome is head-head. This is correct. 

 



 

However, the intersection is empty, meaning it’s the null set. Hence, the probability that X 

= 1 ∩ Y = 0 is the probability of the null set. It is not possible, so the probability is 0. So, 

you are tossing two coins. You can get one head or zero heads. 

 

 

Both events cannot happen simultaneously because if one head occurs, then you cannot 

have both one head and one tail. If one head occurs, the number of tails will be 0. Therefore, 

this is not possible, and the probability will be 0. This is one example. Now, we will 

introduce the joint distribution function. 

 

 

 

 



So, the joint distribution function. Now, you can just remember what the cumulative 

distribution function is for the univariate case. As we have discussed, we have already 

defined the cumulative distribution function for a univariate random variable. Let X be a 

random variable. So, it is a function from the cumulative distribution function. 

Recall that the cumulative distribution function of a univariate random variable X is 

defined as F_X(x), which is the probability that X ≤ x, where x ∈ ℝ. Now, we have a 

bivariate random variable. So, how do we define this bivariate random variable? The joint 

cumulative distribution function, or joint CDF, is defined as the joint CDF. We say the 

joint CDF of a bivariate random variable. 

Usually, we write it as (X, Y) or in third brackets, (X, Y). But for simplicity, sometimes 

we will write it as [X, Y]. A bivariate random variable X, Y is defined as follows: it 

involves two variables. F_{X,Y}(x, y), where both x and y are real numbers, is the 

probability that X ≤ x and Y ≤ y. What is a comma? We have already discussed that for all 

x, y is a vector in ℝ², or you can say that x ∈ ℝ and y ∈ ℝ. 

Then (x, y) is an ordered pair in ℝ². So now, what is X ≤ x, Y ≤ y? So, X ≤ x, we know it’s 

an event. This is nothing but all s ∈ S such that X(s) ≤ x, because X and Y are defined on 

the same sample space, and X(s) ≤ x. And this is, suppose we denote it by an event A_x, 

because it depends on the function X. 

Similarly, Y ≤ y is again a subset of S. It is an event where all s ∈ S such that Y(s) ≤ y. So, 

this is nothing but we denote it as B_y, which is a subset of S. It is an event. We assume 

that because X is a random variable, it is a measurable function, so it will be in the sigma 

field. 

Similarly, since Y is also a measurable function, B_y will be in the sigma field. Therefore, 

this is also an event, and it is a subset of S. So, A_x ∩ B_y is in the sigma field. Therefore, 

A_x ∩ B_y will be inside the sigma field. The probability is nothing but the probability 

that X ≤ x and Y ≤ y, which is the same as the probability of A_x ∩ B_y for all x and y. 

This is the definition of the cumulative distribution function. So, let us consider the joint 

cumulative distribution function, or joint CDF, of X and Y, denoted by Fxy(x, y). This 

function is defined as Fxy(x, y), which is the probability that X ≤ x and Y ≤ y. Now, the 

event X ≤ x, Y ≤ y, is equivalent to the event A. I have denoted it this way because it 

depends on x and y. 



 

So, A_x ∩ B_y, where A and B are events in S, are defined as follows: A is all s ∈ S such 

that X(s) ≤ x, and B is all s ∈ S such that Y(s) ≤ y. We have already defined this. So, this 

is A_x, and this is B_y. Now, what is the probability of A_x? So, the probability of A_x is 

nothing but the probability that X ≤ x. 

We have already used this notation. This is nothing but the cumulative distribution function 

of X. Similarly, the probability of B_y is denoted by the probability that Y ≤ y. This is 

nothing but the cumulative distribution function of Y. So, whenever we are talking about 

a bivariate random variable, suppose we denote F_{X,Y}(x, y) as the bivariate cumulative 

joint distribution function of the bivariate random variable. 

Then, the cumulative distribution function of the subset of the random variable, in this case, 

X and Y, is defined. So, the cumulative distribution function of X and the cumulative 

distribution function of Y, we call it the marginal distribution. It's just a name, it's usually 

called the marginal distribution function. So, P(A_x) is F_X(x), P(B_y) is F_Y(y), and 

F_{X,Y}(x, y) is nothing but A_x ∩ B_y. This depends on Y, and that's why for particular 

values of (X, Y), if A and B are independent events, then this will happen. 

 

 



Now, we will discuss some important properties. Let's suppose we say two events are 

independent. Suppose for any real numbers x and y, where x, y ∈ ℝ. So, basically, we are 

considering (x, y) ∈ ℝ². A_x is a subset of S, and B_y is also a subset of S. Both are in the 

sigma field. We are discussing that A_x ∩ B_y represents the joint distribution function, 

which is nothing but the probability that X ≤ x and Y ≤ y. This is denoted as P(X ≤ x, Y ≤ 

y), which we denote by A_x ∩ B_y. 

Now, for fixed x and y, A_x is an event and B_y is an event. A_x and B_y will be 

independent if P(A_x ∩ B_y) = P(A_x) * P(B_y). 

So, now, if this is true for all (x, y) ∈ ℝ², then F_{X,Y}(x, y) = P(A_x ∩ B_y) = P(A_x) * 

P(B_y). The probability of A_x, where X ≤ x, is the cumulative distribution function of X, 

denoted as F_X(x). The probability of B_y, where Y ≤ y, is the cumulative distribution 

function of Y, denoted as F_Y(y), for all x, y ∈ ℝ². 

So, if this happens, then the bivariate random variables X and Y are called independent. 

So, this is the definition. We know that the definition of two independent events, A and B, 

is that P(A ∩ B) = P(A) * P(B). But here, X and Y are also involved. For particular values 

of x and y, it may be true, but we cannot say that X and Y, as random variables, are 

independent. If this is true for all x, y ∈ ℝ², or for any real number x and any real number 

y, then these two random variables, X and Y, will be called independent random variables. 

That is why this is the definition. If, for particular values of x and y, we have independent 

events, then this is true. 

 

 

However, we say the events are independent when it holds true for all x and y. If it is true 

for all x and y, then we say that X and Y are independent random variables. We will discuss 

in the next part some of the concepts of the independence of two random variables. We 



also need to discuss the properties of bivariate random variables, as well as the properties 

of the joint cumulative distribution function of univariate random variables. 

Next, we want to discuss the properties of F(x, y). We have already discussed the properties 

of F_X(x), such as the univariate random variable and the marginal distribution function, 

and we are familiar with some of those properties. Now, we want to discuss the properties 

of the cumulative distribution function. Additionally, we will go over some numerical 

examples of the bivariate cumulative distribution function and the joint cumulative 

distribution function of the bivariate random variables X and Y. 

 


