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Independence 

 

Next, this is another example. Here, it is not explicitly asked, but you can check that it 

satisfies all the relationships and properties. Here, it is asked that the joint cumulative 

distribution function (CDF) of a bivariate random variable (X, Y) is given by 1 - e^(-αx) * 

(1 - e^(-βy)). Let us consider x ≥ 0 and y ≥ 0. The joint cumulative distribution function, 

F_XY(x, y), is defined for a bivariate random variable. 

 

 

It is defined as 1 - e^(-αx) * (1 - e^(-βy)). Whenever x ≥ 0 and x < ∞, y ≥ 0 and y < ∞, with 

α > 0 and β > 0, and 0 otherwise. This is the cumulative distribution function of a bivariate 

random variable. You can check that when x → ∞, this approaches 1, and when y → ∞, 

this also approaches 1. That is why it goes to 1 as x and y approach infinity. 

It will always be between 0 and 1 because e^(-αx), for positive x and α, will be between 0 

and 1. Since α and β are positive, 1 - e^(-αx) will also be between 0 and 1. We can also 

check the other properties of a cumulative distribution function (CDF). Now, the question 



is that it is not asked, but it is already given that this is the cumulative distribution function 

of a joint bivariate random variable. The task is to find the marginal cumulative distribution 

functions of X and Y. 

 

'Marginal' refers to the distribution of a subset of the random variable. So, what is the 

formula for the marginal distribution? The marginal cumulative distribution function of X 

is given by F_X(x). This is nothing but the probability that X ≤ x. So, how can we find this 

value? 

 

As we have already discussed, it can be found by taking the limit of the other coordinate, 

where y → ∞. The limit of F_XY(x, y) as y → ∞ is nothing but F_X(x). Now, if you take 

the limit as y → ∞, you can see that this is straightforward. Since e^(-βy), with β being a 

positive number, approaches 0 as y → ∞, this becomes 1 - e^(-αx). Another step is to write 

the limit as y → ∞. 

 

Since this is a positive number, it will be αx * (1 - e^(-βy)). So, the expression becomes 1 

- e^(-αx) * (1 - e^(-βy)). So, as y → ∞, since β is a positive number, this goes to 0, and the 

expression goes to 1. So, this is nothing but 1 - e^(-αx). This holds when x ≥ 0. 

If x < 0, we cannot take this function, and it will be 0. So, this is valid when x ≥ 0 and x < 

∞. So, we can write it like this. Finally, we can say that this is equal to 1 - e^(-αx) when x 

≥ 0 and x < ∞. When x < 0, the value will be 0. 

 

When we write a distribution function, we have to specify the entire range. So, what is the 

value? F_X(x) is given by the following: 

• For x < 0, F_X(x) = 0 

• For x ≥ 0 and x < ∞, F_X(x) = 1 - e^(-αx) 

Similarly, you can find the marginal distribution function of Y. Let us compute that. 

 



 

 

The marginal cumulative distribution function (CDF) of Y is given by F_Y(y). So, 

probably that Y ≤ y. This is equal to the limit as x → ∞ of F_XY(x, y). So, this is nothing 

but the limit as x → ∞. So, basically, 1 - e^(-αx) and 1 - e^(-βy) will be valid if y ≥ 0 and 

y < ∞. 

 

It will be 0 if y < 0 and y > -∞. So, this will be the limit, which can be written as 0 first 

because this range is from the left-hand side. Whenever it is greater than 0, we will take 

this function. When x → ∞, this goes to 1 because e^(-αx) is a positive number, and as x 

increases, it approaches 0. So, this goes to 1, and it will be 1 - e^(-βy) whenever y ≥ 0 and 

y < ∞. 

 

So, this is the marginal cumulative distribution function of this joint distribution. Now, for 

X and Y to be independent random variables, how can we show that? The definition is that 

two random variables are independent if you can show that F_XY(x, y) = F_X(x) * F_Y(y) 

for all x and y ∈ ℝ. Since both x and y are positive, F_XY(x, y) = 1 - e^(-αx) * (1 - e^(-

βy)), which is nothing but F_X(x) * F_Y(y). 

 



 

 

 Now, for any other cases, the left-hand side will be 0. If, for example, x < 0 and x > ∞, or 

if y < 0 and y > -∞, the left-hand side will also be 0. F_XY(x, y) will be 0, as we can see. 

Whenever x < 0, F_X(x) will be 0, and if y < 0, F_Y(y) will be 0. Therefore, for any other 

cases, both will be 0. 

 

Hence, F_XY(x, y) = F_X(x) * F_Y(y) for all x, y ∈ ℝ. This implies that X and Y are 

independent random variables. Hence, we can see that X and Y are independent random 

variables. Now, let's move on to the next question. The next question is to find the 

probability that X ≤ 1 and Y ≤ 1. 

 

So, let's find the probability of X ≤ 1 and Y ≤ 1. So, by definition, this is nothing but 

F_XY(1, 1). According to the definition, this represents the probability that X ≤ x and Y ≤ 

y. When x and y are both 1, it represents the probability that X ≤ 1 and Y ≤ 1. We know 

the function is e^(-α * 1) and e^(-β * 1), which equals 1. 

 

So, this is straightforward. Now, the next question is to find the probability that X ≤ 1. This 

is the same because we know that F_X(x) represents the marginal cumulative distribution 

function. Therefore, the probability that X ≤ 1 is nothing but F_X(1). So, F_X(1) is the 

cumulative distribution function of X, which is 1 - e^(-α * x), for x > 0. 

 

So, when x = 1, this becomes 1 - e^(-α). The next problem is also straightforward: the 

probability that X ≤ 1 is F_X(1, 1), which equals 1 - e^(-α). Next, we need to find the 



probability that Y > 1. Similarly, the probability that Y > 1 can be found by taking the 

complement, which is the probability that Y ≤ 1. We know that this is the cumulative 

distribution function of Y evaluated at 1. 

 

This is equal to 1 - e^(-β * 1). When you substitute the value for Y, the result simplifies to 

the exponential term with the negative β. So, that is also straightforward; we just need to 

take the complement. The next problem is to find the probability that X > x and Y > y, 

where x, y ∈ ℝ. Note that this is not simply the complement of the probability that X ≤ x 

and Y ≤ y. 

 

 

Basically, what we want to say is that "Y > y" is not the complement of "X ≤ x, Y ≤ y." 

We can’t just say that the probability is 1 - this. We’ll see that this approach may not be 

true. So, it might seem like a straightforward solution to take the complement, but it may 

not always be correct. So, if you want to find the complement, how can we find the 

probability of X > x and Y > y? 

 

It is simply 1 - P(X ≤ x, Y ≤ y). First, we write down the event, which is the probability 

that X > x complement, and Y > y. So, for all x, y ∈ ℝ, P(X > x, Y > y) = 1 - (P(X ≤ x, Y 

≤ y)). 

 

Now, if you want to find the probability, we know it in terms of F_XY(x, y), which is the 

probability that X ≤ x and Y ≤ y. 



 

So, it is better to try to find the complement of this, but it's not just a direct complement. 

We also need to use some other results. So, this is nothing but 1 - P(X > x, Y > y), the 

whole complement of the event. Now, this is A, and this is B. A ∩ B complement can be 

written as A complement ∪ B complement. 

 

This is a theorem you know. Sorry, yes, this is the result we are using when we take the 

whole complement. A ∩ B complement is nothing but A complement ∪ B complement. 

We are using this result. This is simply 1 - P(X > x complement) = P(X ≤ x ∪ Y ≤ y). 

This is A ∪ B. Then, 1 - A ∪ B formula. We know that this is P(X ≤ x) + P(Y ≤ y) - P(A) 

+ P(B) - P(A ∩ B), P(X ≤ x ∩ Y ≤ y). So, finally, what we get is: 

 

 

1 - P(X ≤ x) - P(Y ≤ y) + P(X ≤ x, Y ≤ y). This is 1 - F_X(x) - 1 - F_Y(y) + F_XY(x, y). 

So, this is finally what we got. Basically, initially, we just wanted to say that this is not 

simply equal to 1 - P(X ≤ x, Y ≤ y), like in the univariate case, where it's straightforward 

like that, 1 - F_XY(x, y). But that is not correct. So, it doesn't come out like this. As you 

can see, it is not like that. 

 

So, we have that P(X > x, Y > y) = 1 - F_X(x) - F_Y(y) + F_XY(x, y). So, this is what we 

found for the cumulative distribution function.  

Finally, this is a numerical example we discussed: the cumulative distribution function, the 

marginal distribution function, and how to find out if the variables are independent, and 

how to check whether they are independent or not. Finally, we discussed how to compute 

some probabilities using the joint cumulative distribution function and their marginal 

cumulative distribution functions. Next, we will discuss discrete bivariate random variables 

and bivariate continuous random variables, including their probability mass functions and 

probability density functions. 

 



 

 

Now, we will discuss the joint probability mass function of two discrete random variables. 

Whenever X and Y are both discrete random variables, the distribution is called the discrete 

bivariate distribution function. Similarly, in the univariate case, when X is a discrete 

random variable, we discuss the probability mass function. The probability mass function 

gives the probability at a point where X = xi. You can remember that whenever X is a 

discrete random variable, we define the probability mass function (PMF) of X as follows: 

 

 

The probability that X = x for all x ∈ ℝ. Now we can define it for all x, but it will be 0. So, 

P(X) ≤ 1 and P(X) ≥ 0. Some of the properties are that P(X = x) ≠ 0 whenever x = xₖ for 

some k ∈ {1, 2, ...}. So, basically, xₖ is the range of X, like x₁, x₂, and so on. 

So, for some k, if x = xₖ, otherwise, the probability is 0 if x ∉ {xₖ} or if x does not belong 

to the range of X. If x ∉ range(X), the probability is 0. Now, one of the properties to 



remember is that the sum of the probabilities of X = xₖ for all possible values of k is equal 

to 1. To find the cumulative distribution function of X from the probability mass function, 

you sum the probabilities for all k such that xₖ ≤ x. This will be 0 when x < x₁ (the minimum 

value in the range of X, for example, x₁, assuming the values are written in ascending 

order). 

So, x₁ will be the minimum. If x < x₁, then the cumulative distribution function, F(x), will 

be 0. So, we have already discussed all these concepts. If you know the probability mass 

function, you can find the cumulative distribution function. Similarly, if you know the 

cumulative distribution function, you can also find the probability mass function. So, Pₓ(x₁) 

= Fₓ(x₁), and for any other value Pₓₖ, it is Fₓ(xₖ) - Fₓ(xₖ₋₁), where k > 1 and k ∈ ℕ. 

 

 

 

So, k takes values like 1, 2, 3, 4, and so on. So, that is why if you have the cumulative 

distribution function, you can also find the probability mass function. Now, for the joint 

distribution of joint random variables, let X and Y be a bivariate discrete random variable. 

So, basically, both are discrete bivariate random variables with the cumulative distribution 

function Fₓᵧ(x, y). This is equal to P(X ≤ x, Y ≤ y). 

The joint probability mass function of (X, Y) is given by Pₓᵧ(x, y), which is the probability 

that X = x and Y = y. Now, this will be 0 if, for example, we consider the range of X, where 

Rₓᵧ is the range. So, this basically contains all the numbers x, which we can write as xᵢ, and 

y, which we can write as yⱼ, where i = 1, 2, ... and j = 1, 2, .... This is equal to 0 if (x, y) ∉ 

Rₓᵧ, and it is non-zero otherwise. So, that is why you can write Pₓᵧ(xᵢ, yⱼ), which is nothing 

but the probability that X = xᵢ and Y = yⱼ, where i = 1, 2 and j = 1, 2. 



 

 

 

For any other values of xᵢ and yⱼ, this will be 0. So, that is the probability mass function. It 

is defined as Pₓᵧ(xᵢ, yⱼ), which equals the probability that X = xᵢ and Y = yⱼ. The function 

Pₓᵧ(x, y) is called the joint probability mass function. So, the joint probability mass function 

has already been mentioned. 

Now, let's discuss the properties of this joint probability mass function. First of all, the 

probability Pₓᵧ(xᵢ, yⱼ) represents the probability that X = xᵢ and Y = yⱼ. Note that this comma 

represents the probability of the event X = xᵢ and Y = yⱼ. We have discussed this several 

times. This is the event where X = xᵢ. X = xᵢ is an event, and Y = yⱼ is also an event. 

So, X = xᵢ corresponds to a set s ∈ S that belongs to the sample space because X is a random 

variable, which means it is a measurable function from the sample space S to ℝ. So, all s 

that satisfy X(s) = xᵢ and Y(s) = yⱼ are elements of the sample space S such that Y(s) = yⱼ. 

These are the events. If you take the intersection of these events, it is the probability that 

X = xᵢ and Y = yⱼ. So, this is the joint probability mass function. 

Since this is a probability, by axiom 1, it will always be ≤ 1 and ≥ 0. This is one of the 

properties mentioned here. Similar to the univariate case, we also discuss the bivariate. The 

sum of all the possible values will be equal to 1. So, the sum of all i and j, the probability 

of X and Y at (xᵢ, yⱼ), should be equal to 1. 

So, this is a certain event because you are considering all possible values that the random 

variable X and Y can take. The sum of all these probabilities should be equal to 1. This is 

similar to finding the probability that X and Y, the random variables, belong to A, where 



A is a subset of the range (xᵢ, yⱼ). So, this is nothing but the summation over all i and j, 

where xᵢ and yⱼ belong to this range. So, this is nothing but all the possible values of xᵢ and 

yⱼ such that they are inside A. 

This can be written as Pₓᵧ(xᵢ, yⱼ), where xᵢ and yⱼ belong to the range of A. So, it is written 

that xᵢ and yⱼ should belong to the range of A. Basically, here, A is a subset of X. What is 

A? A is defined as the set of all elements in S such that X(xᵢ) belongs to S. 

In other words, for all s ∈ S, X(s) belongs to the range of A, and Y(s) belongs to the range 

of Y. In a different way, we can write, sorry. So, this is nothing but when X(s) = xᵢ and 

Y(s) = yⱼ, and then the pair (X(s), Y(s)) should belong to the range of A. The range of A is 

a subset of the sample space. Now, I hope you have understood that. 

 

 

Next, we will discuss how to find the cumulative distribution function if you know the joint 

probability mass function. 


