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Marginal Probability Density Function, Independence, and Examples 

 

Let (X, Y) be a continuous bivariate random variable with the joint probability density 

function f_XY(x, y). Suppose this is given. Now, how can we find the marginal probability 

density function? We want to find the marginal probability density function because X and 

Y are continuous random variables. 

The marginal probability density function of X is given by the derivative of the cumulative 

distribution function (CDF) of X. It can be expressed as: 

f_X(x) = d/dx F_X(x) 

This is the probability density function. 

Now, how do we find this? It is essentially the derivative of F_X(x), which is given by: 

f_X(x) = d/dx lim(y → ∞) F_XY(x, y) 

Here, F_X(x) is: 

F_X(x) = lim(y → ∞) F_XY(x, y) 

Now, F_X(x) is known to us. To find its derivative, we use the fact that: 

F_X(x) = lim(y → ∞) F_XY(x, y) 

This represents the probability that X ≤ x and Y ≤ y. If we want to express this as y → ∞, 

we use the probability density function. So, we have: 

F_X(x) = ∫ from -∞ to x [ ∫ from -∞ to y f_XY(u, v) dv ] du 



Now, by the definition of integral calculus, the function inside the integral depends on u, 

and after performing the integration with respect to v, we get: 

F_X(x) = ∫ from -∞ to x [ ∫ from -∞ to ∞ f_XY(u, v) dv ] du 

Thus, this is F_X(x), and when you take the derivative of F_X(x) with respect to x, you 

obtain: 

f_X(x) = d/dx F_X(x) = d/dx ∫ from -∞ to x [ ∫ from -∞ to ∞ f_XY(u, v) dv ] du 

This is the marginal probability density function f_X(x). 

 

 

 

This becomes f(x, y), and now it is becoming because we are taking the limit from -∞ to x, 

and then y. So, this is actually v, and we took this dv. This is the f_xy(v) dv. This is ∫ from 

-∞ to ∞ of f_xy. Now, if you apply some integral rules and take the derivative of this 

function, it becomes evaluated at x, ∫ from -∞ to ∞ of f_xy(x, v) dv. 

Basically, what we finally found is shown here. Similarly, as explained, F_x(x) becomes ∫ 

of f_xy(x, η) dη when you take the derivative. So, that means without going through this 

complexity, you can understand how we found it in the discrete case. In the discrete case, 

we found P_xy(x_i, y_j). If you fix x_i and take the sum over the other variable, we found 

the marginal density function for X in the discrete case, where X is a discrete variable. 

Now, for the continuous case, how can we find that? For the continuous case, to determine 

f_x(x), instead of taking a sum as in the discrete case, we take the integration of the joint 

density function f_xy(x, y) with respect to the other variable. Whenever X is a continuous 



random variable, the marginal probability density function of X can be determined by 

integrating the joint probability density function with respect to the other variable. By 

performing this integration, we obtain the marginal probability density function of X. 

Similarly, the marginal probability density function of Y, denoted as f_y(y), is obtained by 

integrating the joint probability density function f_xy(x, y) with respect to x over the 

interval from -∞ to ∞. 

In the discrete case, we take the sum, while in the continuous case, we integrate with respect 

to the other variable, dx. By performing the integration with respect to x, we obtain the 

marginal probability density function of Y. This is the probability density function of Y. 

Similarly, we can find the marginal probability density function of X using this formula. 

Now, we will proceed to the next topic. 

I hope this is clear. You have understood how, when the joint probability density function 

is given, we can find the marginal probability density function of X. Similarly, we have 

also understood how to find the marginal probability density function of Y. Now, we will 

work through some examples as well. So, it will be clearer. 

 

 

 

Now, we know that whenever X and Y are independent, if X and Y are independent random 

variables, then the joint cumulative distribution function is equal to F_x(x) * F_y(y) for all 

(x, y) ∈ R. So, we know that if X and Y are independent random variables, then F_xy(x, y) 

= F_x(x) * F_y(y) for all (x, y) ∈ R. 



Now, if you take the derivative d/dx of F_xy(x, y), this is nothing but d/dx of F_x(x). Note 

that it is independent of y, so this becomes f_x(x) * F_y(y). 

Similarly, if you take the derivative with respect to y, d/dy of F_xy(x, y), this is nothing 

but d/dy of F_y(y), which is independent of x. So, the derivative will be f_y(y). 

Now, the left-hand side is the joint probability density function f_xy(x, y), and the right-

hand side is the product of the marginal probability density functions f_x(x) and f_y(y). 

Hence, f_xy(x, y) = f_x(x) * f_y(y) for all (x, y) ∈ R. This represents the marginal 

probability density function of X and the marginal probability density function of Y. 

Hence, this is true for all (x, y) ∈ R. This is equivalent to what we are getting. 

To check whether two random variables are independent or not, there are many approaches. 

One approach is to find their joint cumulative distribution function F_xy(x, y) and check 

whether it can be expressed as the product of their marginal cumulative distribution 

functions F_x(x) and F_y(y). 

In the case of continuous variables, we can also check whether their joint probability 

density function f_xy(x, y) can be represented as the product of their marginal probability 

density functions f_x(x) and f_y(y). So, if X and Y satisfy this condition, we can say that 

X and Y are independent continuous random variables. 

If the joint probability density function f_xy(x, y) can be represented as the product of their 

marginal probability density functions f_x(x) and f_y(y) for all (x, y) ∈ R, then X and Y 

are independent random variables. 

If their joint probability density function f_xy(x, y) can be represented as the product of 

their marginal probability density functions, then we say that X and Y are independent 

random variables. 

These are the concepts related to continuous random variables: their cumulative 

distribution function F_xy(x, y), joint probability density function f_xy(x, y), how to find 

the marginal probability density function f_x(x) or f_y(y) from the joint probability density 

function f_xy(x, y), and how to check if two random variables are independent by verifying 

if the joint probability density function f_xy(x, y) is equal to the product of their marginal 

probability density functions f_x(x) and f_y(y) for all (x, y). 



So, now we can discuss some examples. Let's discuss this example. Here is an example: 

Suppose the joint probability density function of a bivariate random variable X and Y is 

given by this. 

 

 

 

 

The joint probability density function f(x, y) = k * x * y, where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 

f(x, y) = 0 otherwise. Here, k is a constant. Find the value of k. Are X and Y independent? 

Find the probability that X + Y < 1. Let us discuss this. 

The joint probability density function of a bivariate continuous random variable is given 

by f(x, y) = k * x * y, where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1; it is equal to 0 otherwise. 

The joint probability density function of a bivariate continuous random variable is given 

by f(x, y) = k * x * y, where 0 < x < 1 and 0 < y < 1. Here, k is a constant, meaning it is a 

real number. Now, we need to find the value of k. 



To find k, we check the properties of the joint probability density function. Since it is a 

probability density function, it should satisfy the properties of a joint probability density 

function. 

1. f(x, y) ≥ 0: Since k is a constant and x, y are between 0 and 1, the value of f(x, y) 

is positive. Therefore, k must be a positive value. If not, f(x, y) = 0 otherwise. This 

means k ≥ 0. 

2. The integral over the region should be equal to 1: ∫ from -∞ to ∞ ∫ from -∞ to ∞ of 

f(x, y) dx dy = 1. Outside the region, f(x, y) = 0. Within the region 0 ≤ x ≤ 1 and 0 

≤ y ≤ 1, we have: 

∫ from 0 to 1 ∫ from 0 to 1 of f(x, y) dx dy = 1. 

Substituting f(x, y) = k * x * y: 

∫ from 0 to 1 ∫ from 0 to 1 of k * x * y dx dy = 1. 

Now, perform the integration. First, integrate with respect to y, then with respect to x: 

∫ from 0 to 1 [k * x * (y² / 2) | from 0 to 1] dx = 1. 

This becomes ∫ from 0 to 1 k * x * (1² / 2 - 0) dx = ∫ from 0 to 1 (k * x / 2) dx = 1. 

Now integrate with respect to x: 

k / 2 * ∫ from 0 to 1 x² / 2 dx = 1. 

k / 2 * (x³ / 3 | from 0 to 1) = 1. 

k / 2 * (1³ / 3 - 0) = 1. 

k / 2 * (1 / 3) = 1. 

k / 6 = 1, so k = 6. 

Therefore, the value of k is 6. 

Next, we check whether X and Y are independent. To check this, we first need to find the 

marginal distributions. 

 



 

 

The definition of independence is that we need to show that fₓᵧ(x, y) = fₓ(x) * fᵧ(y) for all 

x, y ∈ ℝ. So, to make this relationship true, we first need to find fₓ(x) and fᵧ(y). To check 

this relationship, we need to know the marginal distributions. The marginal probability 

density function of X is given by the marginal probability mass function fₓ(x), derived from 

the joint probability density function. This is how we find the marginal probability density 

function of X. We integrate from -∞ to +∞ over y, considering the whole region. 

The function is kxy when 0 ≤ x ≤ 1. So, this is the integral from -∞ to +∞ of k, which we 

found to be 4, times 4xy dy. Otherwise, the result is 0. So, then from -∞ to +∞, you have 

to integrate 4xy dy. Since 4x is a constant, the integration will be 4x * ∫ y dy, which is 4x 

* (y² / 2). 

Okay, one minute. So, it is not -∞ to +∞. The value of 4xy is valid only when 0 ≤ y ≤ 1. 

Similarly, x must also satisfy 0 ≤ x ≤ 1. Otherwise, the integral will be 0. 

So, that is why this is 4x * (y² / 2), and the limits are from 0 to 1. So, this value is 2, and 

the 2s cancel out. y² becomes 1 when you subtract 0 from 1. This gives 1 / 2. So, the 2s 

cancel again, and you get 4x * (1 / 2), which simplifies to 2x. So, finally, what we get is 

2x, for 0 ≤ x ≤ 1, and 0 otherwise. This is the marginal probability density function. 

So, if the computation is correct, you can check it because it has to be a probability density 

function. The integration from 0 to 1 should equal 1. So, you can see that x² / 2, with 2 and 

2 canceling, and in the limit from 0 to 1, this equals 1. That is why this is a probability 

density function. Now, similarly, the marginal probability density function of Y is given 

by fᵧ(y), which is nothing but the integral from -∞ to +∞ of fₓᵧ(x, y). 



 

 

 

Now, we will do the integration with respect to x. So, similarly, we will do that, and you 

can understand now. This will be nothing but the integral from 0 to 1 of 4xy with respect 

to x, whenever 0 ≤ y ≤ 1; otherwise, it is 0. After performing this integration, it is actually 

the same by symmetry. So, it is 2y whenever 0 < y < 1; otherwise, it is 0. 

Now we can see that, if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, fₓᵧ(x, y) is nothing but 4xy, which is the 

same as 2x * 2y, or fₓ(x) * fᵧ(y). For any other region, if x is outside this interval or y is 

outside this interval, then fₓᵧ(x, y) = 0, which is the same as fₓ(x) * fᵧ(y). So, basically, fₓᵧ 

will be 0 if either x or y is outside this interval, or if both are outside. On the right-hand 

side, if x does not belong to the interval, fₓ(x) will be 0, making the product 0. Similarly, if 

y does not belong to the interval, fᵧ(y) will be 0, and the product will be 0. 

If both are outside the region, then both will be 0. So, that is why if either of these 

conditions hold, we can conclude that fₓᵧ(x, y) = fₓ(x) * fᵧ(y) for all x, y ∈ ℝ, or we can say 

that this vector belongs to ℝ². Hence, from the definition and properties of independence, 

we conclude that X and Y are independent random variables. Finally, the next question is 

to find the probability that X + Y < 1. How can we compute this kind of question, 

specifically the probability of X + Y < 1? 



 

 

Let us first represent this graphically, as it will help us understand the problem better. This 

is the region from 0 to 1, and this is where the density function exists, from 0 to 1. These 

are the points (0, 1), (1, 0), and (1, 1). So, this density function is non-zero inside this 

region. Now, the question asks about X + Y < 1. 

The line X + Y = 1 is represented by this line. This line corresponds to X + Y = 1, and X 

+ Y < 1 means we are interested in the probability of the joint random variable taking 

values inside this region. So, to find this probability, we need to integrate over the region 

where X + Y < 1, using the joint probability density function fₓᵧ(x, y) and integrating with 

respect to x and y. However, this is not simply 4xy for the entire region; it is only 4xy 

within the intersection of the square where X and Y are between 0 and 1. We need to focus 

on that specific region to find the correct value. 

So, how will we do that? The region will be such that whenever 0 ≤ x ≤ 1 or 0 ≤ y ≤ 1, for 

any fixed value of y, x will not go beyond 1. It is limited to this value. What is this value? 

This value is given by the equation X + Y = 1. 

For a fixed value of y, this value is 1 - y, and for any value of y, the x-coordinate will be 1 

- y. This means the integration will go from 0 to 1 - y, with the function 4xy, then dx. The 

limit for y will be from 0 to 1. So, this becomes the double integral from 0 to 1, and from 

0 to 1 - y, with the function 4xy, dx and then dy. So, we have to do the integration now. 

The limits are from 0 to 1, and for the inner integral, the limits are from 0 to 1 - y. The first 

part is 4y, which is constant here, and the integration of x² is divided by 2. So, we have the 

limits from 0 to 1 - y, and then we integrate with respect to x. After this, we get 2y. Then, 

we integrate from 0 to 1, and the result is y * (1 - y). 



So, x² multiplied by (1 - y)², divided by 2, gives us (1 - y)². Then, we integrate y² with 

respect to y. We need to integrate this expression from 0 to 1 for y * (1 - y)². Expanding 

this, we get 1 - 2y + y². Therefore, the integral becomes 2 * the integral from 0 to 1 of the 

expression y - 2y² + y³ with respect to y. 

Then, we need to perform the final integration. This is nothing but y² / 2, integrated from 

0 to 1, minus 2y³ / 3, integrated from 0 to 1, plus y⁴ / 4, integrated from 0 to 1. So then what 

we are getting finally is equal to 2 * (1 / 2 - 2 / 3 + 1 / 4). So let us do the final calculation, 

which is equal to 2 * (1 / 2 - 2 / 3 + 1 / 4). So this is equal to 2 * (1 / 2) * (1 - 2 / 3 + 1 / 4). 

This simplifies to 6 - 8 + 3, giving us 1 / 12. 

 

 

 

This is nothing but 1 / 6. So, if these computations are correct, then this probability is 

nothing but 1 / 6. So, this is the answer. This should be the answer. Please check if these 

computations are correct; otherwise, you can check again to see if the answer matches. 

 



 

Next, we will discuss another numerical example. I hope you have understood this 

numerical example, where we discussed how to find the constant k for the joint probability 

density function and how to check if X and Y are independent. First, we need to find the 

marginal probability density functions of X and Y, and then check if they are independent. 

After that, we will compute the probability that X + Y < 1. 


