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Conditional Probability Mass Function 

 

Let (X, Y) be a discrete random variable with the joint probability mass function Pxy(xi, 

yj), where i = 1, 2, and j = 1, 2, and so on. So, the range of Rxy may be finite or countably 

infinite, but we represent it as i = 1, 2, and j = 1, 2, and so on. The conditional probability 

mass function of X, given that Y takes some value, is defined as follows: Suppose yj is a 

fixed value, observed as yj. Given yj, we can define the conditional probability mass 

function of X given Y. 

 

It is the probability that X = xi, given that Y = yj. So, yj is fixed, and we are considering 

different values that xi can take. The probability is defined as the intersection of X = A and 

Y = yj, divided by the probability that Y = yj. This is written as P(X = A ∩ Y = yj) / P(Y 

= yj). So, this is essentially the joint probability mass function divided by the marginal 

probability mass function. 

 

Here, for i = 1, 2, and so on, and j is fixed, but it can take any value. That’s why we can 

write it this way. So, now it is important to note that for a given yj, where j can be any 

value, we are finding the probability mass function. It will be a probability mass function, 

so the properties of the probability mass function must be satisfied. What are these 

properties? 

 

The property is that the summation of P(X = xi | Y = yj), where xi is fixed for a particular 

yj, and when you sum over all values of xi, the result should be equal to 1. So, it should be 

clear that this is not the sum over yj. If you vary yj while fixing xi, this may not be equal 



to 1. This applies to the particular values of Y, where yj ∈ Y. For example, if we write j ∈ 

{1, 2, ..., n}, the range is finite. 

 

However, it could also be infinite. For a particular value of j, this sum will be equal to 1, 

and this is a probability mass function. This is the second property, which is written here. 

The first property is that P(X | Y), or P(xi | yj), will always be ≥ 0 and ≤ 1. These properties 

are given in a similar way. 

 

The conditional probability of X given yj is written here. Similarly, the conditional 

probability of Y given X can also be defined. The conditional probability, similarly, the 

conditional probability mass function of Y given X, is defined as the probability that Y = 

yj given that X = xi. Here, xi is a fixed value, and we are finding the conditional probability 

mass function. By definition, the probability of X = xi and Y = yj is divided by the 

probability of X = xi. 

 

The assumption here is that, since it is a probability mass function, the range of X will be 

non-zero when X = xi. It can be represented as Pxy(xi, yj) / Px(xi), the marginal probability 

mass function. This is the joint probability mass function for j, which can take any value, 

such as 1, 2, and so on. Now, these properties have been discussed because it is a 

probability mass function. Since it is a probability, it must be ≥ 0 and ≤ 1. 

 

It will satisfy all the properties of a probability mass function. For example, if you take the 

sum of P(Y = yj | X = xi) for a particular value of xi, and fix this xi, then the sum over yj 

should be equal to 1, where i ∈ {1, 2, ...}. This is given here. You can see that this condition 



is written because it is a probability mass function. This part has to be non-zero, meaning 

it must be > 0. 

 

Similarly, this part also has to be > 0, so Px(xi) must be > 0. Otherwise, this will be 

undefined. This is the concept of conditional probability. Let us discuss the conditional 

probability mass function and how it is defined. It will be clearer when we work through 

some numerical examples. These examples are provided. 

 

For instance, the joint probability mass function of a bivariate random variable X and Y is 

given by the function k * xi² * yj, where xi ∈ {1, 2}, and yj ∈ {1, 2, 3}. The function equals 

0 otherwise. Let us write down the joint probability mass function. The joint probability 

mass function of the bivariate discrete random variable (X, Y) is given by Pxy(xi, yj). This 

is equal to k * xi² * yj, where xi ∈ {1, 2}, and yj ∈ {1, 2, 3}. 

 

 

 

These are the values for xi and yj, and it's 0 otherwise. So, k * xi² * yj for xi ∈ {1, 2}, and 

yj ∈ {1, 2, 3}, and 0 otherwise. So, this will be 0 otherwise. Now, k is a constant. We need 

to find the values of k. 

 

First, we have to determine the values of k. We'll take a similar approach as before, as we 

have solved a similar problem earlier. We will use the properties of the probability mass 

function. The probability mass function must be ≥ 0, which means the constant k must be 



positive. If k ≤ 0, the probability mass function would not satisfy the requirement of being 

non-negative, making it invalid. 

 

Additionally, a non-positive k would fail to meet the property that the sum of all 

probabilities equals 1, which is a fundamental property of any probability mass function. 

Therefore, k > 0. Furthermore, the sum of the probabilities over all values of xi ∈ {1, 2} 

and yj ∈ {1, 2, 3} must equal 1 to ensure that the probability mass function is properly 

normalized. 

 

So now, if you write k into xi, where xi = 1 and yj = 2, then k * xi² * yj becomes: 

 

k * (1² * 1 + 2² * 1 + 1² * 2 + 2² * 2 + 1² * 3 + 2² * 3). 

 

This is the total sum, and it should be equal to 1. 

 

So now, let us simplify this: 

 

(1² * 1) + (2² * 1) + (1² * 2) + (2² * 2) + (1² * 3) + (2² * 3) 

 

= 1 + 4 + 2 + 8 + 3 + 12 

 

= 30. 

 

Thus, we have: 

 

k * 30 = 1. 

 

Solving this gives: 

 

k = 1 / 30. 

 

So, the probability mass function now is: 

 

Pxy(xi, yj) = (1/30) * xi² * yj, where xi ∈ {1, 2} and yj ∈ {1, 2, 3}, and 0 otherwise. 



 

So, this is the probability mass function we found. Find the marginal probability mass 

function of X and Y. Now, we need to find the marginal probability mass function. How 

do we find the marginal probability mass function? By definition, to find the marginal 

probability mass function of X, we calculate the probability mass function of X. 

To do this, we need to find Px(xi), where xi ∈ {1, 2}. This is equal to the summation over 

yj ∈ {1, 2, 3} of Pxy(xi, yj). 

 

This is simply (1/30). Then, k = 1/30. 

 

Next, we calculate xi² * 1 + xi² * 2 + xi² * 3. This value is for xi ∈ {1, 2}; otherwise, this 

value is 0. So, we can write for xi ∈ {1, 2}; otherwise, this value is 0. 

So, xi² becomes (1² + 2²) = 1 + 4 = 5, and multiplying 5 by 1/30 gives 5/30 = 1/6. This 

simplifies to (xi² / 5) = 1/6. 

 

Now, we need to properly write the probability mass function. The marginal probability 

mass function of X is given by Px(xi). This is xi² / 5, whenever xi ∈ {1, 2}; otherwise, this 

is 0. 

 

Similarly, we will find the marginal probability mass function of Y. 

The probability mass function of Y is given by Py(yj). This is equal to the summation over 

xi ∈ {1, 2} of Pxy(xi, yj). 

 

Here, we will take the sum over the other variable, fixing yj. So, now this will be for yj ∈ 

{1, 2, 3}. Py(yj) can be written as the summation over xi. 



 

This is (1/30) because, otherwise, this value will be 0 for any other values of yj, where yj 

∈ {1, 2, 3}. It is (1/30) * xi² * yj. So, (1/30) * yj * xi². Then, yj will come in, and we have 

(1² + 2²) * yj = xi² * yj. 

 

Finally, we get (5 * yj) / 30, which simplifies to yj / 6. 

 

So, we will write this value properly. Finally, what we got is Py(yj), the marginal 

probability mass function of Y. This is equal to yj / 6, where yj ∈ {1, 2, 3}. We can also 

write it as yj ∈ {1, 2, 3}, and 0 otherwise. You have to write it properly, showing where it 

is non-zero, what the value is, and where it is actually equal to zero. 

 

 

This is the marginal probability mass function. Now, the next question is: Are X and Y 

independent? How can we find if X and Y are independent? Suppose X and Y, or xi and 

yj, are independent. Then, P(xi, yj), the joint probability mass function, will be Px(xi) * 

Py(yj) for any values of xi and yj. 

 

Now, you can see that if xi ∈ {1, 2}, and yj ∈ {1, 2, 3}, then Pxy(xi, yj) is simply (1/30) * 

xi² * yj. This can be represented as (xi² / 5) * (yj / 6). This is simply Px(xi) * Py(yj). You 

can see that Px(xi) is (xi² / 5), and Py(yj) is (yj / 6). Hence, if xi ∉ {1, 2}, or yj ∉ {1, 2, 3}, 

then Pxy(xi, yj) will be 0, which is equal to Px(xi) * Py(yj). 

 

Because if xi ∉ {1, 2}, then the left-hand side, the joint probability mass function, will be 

0, and Px(xi) will also be 0. Similarly, if yj ∉ {1, 2, 3}, then Py(yj) will be 0, and the left-



hand side will also be 0. So, if one of them is 0, the marginals will also be 0. If neither 

belongs to this point, then both will be 0. In all these situations, this will hold true. 

 

Hence, we found that Pxy(xi, yj) = Px(xi) * Py(yj) for all xi and yj values. So, X and Y are 

independent random variables, which implies that X and Y are independent. Now, what is 

the next problem? So, X and Y are independent. Find the conditional probability mass 

function of Y given X, i.e., Py(yj | xi). 

 

 

 

We have to find the conditional probability mass function, and then we can compute those 

values from the probability mass function as well. So, what will be the conditional 

probability mass function? By definition, the conditional probability mass function of X 

given some value Y is equal to yj. So, P(X | Y) = Pxy(xi, yj) / Py(yj). 

 

This is Pxy(xi, yj) by definition. Now, note that this will be non-zero when yj ∈ {1, 2, 3}. 

This is nothing but, if this is true, otherwise it will be 0. It will be undefined. So, for yj ∈ 

{1, 2, 3}, we can compute this value. Otherwise, the upper part will also be 0. Therefore, 

we define it as 0 because it is a probability mass function, and we must define the other 

values as 0. 

 

So, the joint probability mass function, Pxy(xi, yj), is nothing but (1/30) * xi² * yj. By the 

definition of Py(yj), we know that Py(yj) = yj / 6. 



 

So, when we substitute this in, the yj terms cancel out, leaving us with (xi² / 5). 

The conditional probability mass function is defined as P(xi | yj). This is (xi² / 5), for xi ∈ 

{1, 2}, and yj ∈ {1, 2, 3}. 

 

In this case, the probability mass function will be non-zero. For any other values of xi or 

yj, this value will be 0. Either xi ∉ {1, 2}, or yj ∉ {1, 2, 3}. 

 

Note that this is the marginal probability. This is the same as the marginal probability mass 

function of xi. 

 

Since X and Y are independent random variables, the conditional probability of Y should 

be equal to the marginal probability of Y. So, P(Y | X) = Py(yj). 

 

The probability of X taking some value should not depend on the value that Y is taking. 

So, the conditional probability of Y, whether it is given or not, does not matter. This is 

what independence means. 

 

Similarly, we can show that the conditional probability of Y given X is the same as the 

probability of Y. 

 

 



We will discuss again how the conditional probability should be the same. So now, the 

conditional probability mass function of Y given X, where X is equal to some value xi, is 

defined as P(Y | X) = Pxy(xi, yj) / Px(xi). Sorry, the probability of Y given X, with some 

value yj given xi, where xi is a fixed value, is defined as Pxy(xi, yj). 

 

Note that xi must belong to {1, 2}; otherwise, Px(xi) will be 0, and the probability will be 

undefined. So, by definition, this is (xi² * yj) / Px(xi). 

 

This is the joint probability mass function: Pxy(xi, yj) = (1/30) * xi² * yj. 

Px(xi) = (xi² / 5). So, this becomes (xi² * yj) / (xi² / 5). Then, this cancels out, leaving yj / 

6. So, hence, the joint conditional probability mass function can be written as P(Y | X) = 

yj / 6, whenever yj ∈ {1, 2, 3}. 

 

And given the condition, xi can take some value; it can be 1 or 2. This will be 0 otherwise. 

So, note that this function does not depend on xi. Whatever the values of xi are, whether 1 

or 2, the value remains the same. It is only dependent on yj, which can be 1, 2, or 3. 

This is nothing but Py(yj). So, this is the marginal probability mass function. The 

conditional probability mass function does not depend on xi because X and Y are 

independent. So, the conditional probability mass function of Y is the same as the marginal 

probability mass function of Y. This comes from this relationship. 

 

 

 



If X and Y are independent, then, based on the example, we can conclude that X and Y are 

independent random variables in general. So, by definition, Pxy(xi, yj) = Px(xi) * Py(yj). 

Now, the conditional probability mass function of X given Y, where Y = yj, is Pxy(xi, yj) 

/ Py(yj). 

Now, since they are independent, this condition is true. We can write Px(xi) * Py(yj) / 

Py(yj). Then this cancels, assuming that Py(yj) ≠ 0. So, this is nothing but Px(xi), which is 

equal to Px. Therefore, this is equal to the marginal probability mass function Px. 

Similarly, it can be shown that P(Y | X), or Py(yj | xi), by definition is Pxy(xi, yj) / Px(xi). 

This is the definition. But since X and Y are independent, this is nothing but Px(xi) * Py(yj) 

/ Px(xi). So, this cancels, leaving Py(yj). 

So, if X and Y are independent, we do not need to compute the conditional probability 

mass function. We can directly say that, because they are independent, the conditional 

probability mass function should be equal to their marginal probability mass function. 

So, now for the last problem, we will apply this result without computing it. 

 

 

Using the definition, since it asks for the probability of Y = 2 given X = 2, the probability 

of Y = 2 given X = 2. Since we have seen that X and Y are independent, this will be equal 

to the probability of Y = 2 only. So, we do not need to compute A given B, intersection B, 

or any of these things. The conditional probability mass function is simply the probability 

of Y = 2. The probability mass function of Y is the probability of yj / 6. 

So, when yj = 2, the result is 2 / 6, which simplifies to 1/3. Similarly, if you want to find 

the probability that X = 2 given Y = 2, this is simply the probability of X = 2 given Y = 2. 



Since X and Y are independent, this is equivalent to the probability mass function of X 

evaluated at 2. The probability mass function of X is given as xi² / 5. So, we will write xi² 

/ 5. 

With xi = 2, this becomes 2² / 5. This is equivalent to 4 / 5. So, this is the problem we 

discussed using the conditional probability mass function. I hope you are following along 

and understand the concept of how to find the conditional probability mass function when 

X and Y are discrete random variables. We also discussed their properties, how to check 

their independence with respect to conditional probability mass functions, and how to 

compute the respective probabilities, as demonstrated in the numerical examples. Next, we 

will discuss what happens if X and Y are two random variables that are continuous. 

 

 

In that case, we need to discuss the joint probability density function, which we have 

already covered. Here, we will focus on the conditional probability density function—how 

it is defined, its properties, and how we can compute the related probabilities with respect 

to the conditional probability density function for continuous bivariate random variables. 


