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Important Theorems 
 

Note that we just discussed that P(h) ≥ 0. But you know that probability, initially, is 

defined as a function from C to R. It is a real number. But you know that it is not only a 

real number; it is actually between 0 and 1 only. 

The probability is always between 0 and 1. But initially, we only discussed it as a 

function from C to R. For any A, the probability of A is a real number. But one by one, 

we provided the axioms. Axiom 1 states that P(A) ≥ 0. 

 

It is a positive real number, including 0, meaning it is ≥ 0. The probability of S is equal to 

1. But we know that for the impossible event, P(∅) = 0. However, here, we did not 

explicitly mention it. We stated P(A) ≥ 0. 

But P(A) ≤ 1 was not mentioned in the axiom. Also, the third axiom states that the 

probability of the union ∪ (from i = 1 to ∞) of A_i is equal to the sum Σ (from i = 1 to ∞) 

of P(A_i). So, these are axiom 1, axiom 2, and axiom 3. In particular, we discussed that it 

is given as P(A₁) + P(A₂). 



 

So, there are many other things we already use in probability, such as if A ⊆ B, then P(A) 

≤ P(B). And we know that it is a kind of notation: all the elements in B that are not in A, 

or B - A, is nothing but P(B) - P(A), if A ⊆ B. So, those properties include that P(∅) = 0 

and P(A) ≤ 1. Those properties we have to prove because they are not included in the 

axioms. So, we will use those properties frequently in the future because of probability. 

 

This means that if A ⊆ B, then P(A) ≤ P(B). What about the probability of Ac ? It is 

nothing but 1 - P(A). So, those basic probabilities you have already learned are frequently 

used for computing numerical probability problems. So, those results are neither in the 

axioms nor have we proved them, so we cannot use them because we do not know if they 

are true or false. 

 

 

 



 

So, we can use it only when we prove it. If it is in the axiom, you can directly use it 

because it satisfies the axiom, and only then is it considered probability. So, if we say P is 

a probability, then it must satisfy Axiom 1, Axiom 2, and Axiom 3. For any other 

property you want to use in the future, we have to prove it. So, we will prove some 

important theorems here because we will frequently use them in the future. 

So, it is important to know that it is truly correct, so we have to prove it first. Let us 

discuss Theorem 1.1. If A₁ ⊆ A₂, then P(A₁) ≤ P(A₂). The notation for A₂ \ A₁ should be 

written as A₂ \ A₁, representing all elements in A₂ that are not in A₁. In set theory, this is 

not like subtracting real numbers, such as 3 − 2 = 1. 

A₂ \ A₁ means the elements in A₂ that do not belong to A₁. So, this is simply P(A₂) − 

P(A₁), and it holds under the given condition. So, let us prove this theorem first. So, 

Theorem 1.1 says that if A₁ ⊆ A₂, then P(A₁) ≤ P(A₂), and P(A₂ \ A₁) = P(A₂) − P(A₁). So, 

let us prove this. 

 

 



 

First of all, let us write down what A2 − A1 is. Suppose this is a sample space S, where 

A2 ⊆ A1. Now, A2 − A1 means this set. This set can be represented as A2 − A1, which 

can also be expressed as A2 ∩ A1c. When you intersect A2, the common elements of A1c 

will contain all the elements that are in S but do not belong to A1. 

If you take the intersection of A1 and A2, this is nothing but A2 ∩ A1^c. Now, A2 and 

A2 − A1 can be written as the disjoint union of A1 and A2 − A1. So, the disjoint union 

represents A1 ∪ (A2 − A1). Suppose this set is B1 and this set is B2. Then B1 ∪ B2 = 

A2, and not only that, B1 ∩ B2 = ∅. 

Here, we consider B1 = A1 and B2 = A2 − A1. For simplicity, we are just using this 

notation. So, now we can see that B1 ∩ B2 = ∅. Now, just with the Venn diagram, we 

can understand it very quickly; that is why we wrote it. For set theory, you can show that 

if S ∈ (A1 ∪ (A2 − A1)), then S ∈ A2. 

 

This is also a null set, which you can demonstrate because B1 is simply the set A1, and 

B2 is all the elements that do not belong to A1 but do belong to A2. That is why these are 



disjoint. So, now using Axiom 3, we know that because B1 ∩ B2 = ∅, the probability of 

B1 ∪ B2 implies that P(B1 ∪ B2) = P(B1) + P(B2). Since B1 ∪ B2 = A2, this implies 

that P(A2) = P(B1), which is the same as P(A1). Since B1 ∩ B2 = ∅, this is required by 

Axiom 3. 

Now, P(B1) = P(A1) + P(B2), which is P(A2) - P(A1). This implies that P(A2 \ A1) = 

P(A2) - P(A1). So, this is the first result: if A1 ⊆ A2, then P(A1) ≤ P(A2). This is the 

theorem: if A1 ⊆ A2, then this holds. Now, next, we have to prove that P(A2 \ A1) = 

P(A2) - P(A1). 

 

 

Sorry, we have already proven this result. But we did not prove this result: that P(A1) ≤ 

P(A2). So, now this is the probability of A2 - P(A1). We found that P(A2 \ A1). Now, by 

Axiom 1, A2 \ A1 is also an event because A2 \ A1 can be written as A2 ∩ A1^c. So, it is 

an event. 

So, this is ≥ 0 by Axiom 1. So, you can see what Axiom 1 says. Axiom 1 says that P(A) ≥ 

0 for any event A. So, A is because all the other set elements are—A2 also belongs to C, 

and A1 also belongs to C because they are the events we are talking about. A2 ∩ A1^c 

will also be in C, so it will be an event. 



 

So that is why this will be ≥ 0. So, from that, because P(A2) − P(A1) ≥ 0, we say that 

P(A2) ≥ P(A1). So, this is the proof of Theorem 1. This proof is not very complicated or 

difficult, but still, we need to prove it because, in the future, we will write it down and 

use this theorem, so we need to know that we will frequently use it. A ⊆ B, so P(A) ≤ 

P(B). 

 

The probability of B − A = P(B) − P(A). Whenever A ⊆ B, we can use this result. If A ⊄ 

B, we cannot use this result. So, that is why it is important. Now, Theorem 1.2 says that 

for every event A, 0 ≤ P(A) ≤ 1. 



 

In Axiom 1, we already know that P(A) ≥ 0. However, we do not yet know that P(A) ≤ 1; 

that is what we have to prove. So, let us prove it here for Theorem 1.2. For any A ∈ C, 

which means A ⊆ S—any event, actually—the probability of A is ≤ 1 and ≥ 0. By Axiom 

1, P(A) ≥ 0. 

Now we have to prove that P(A) ≤ 1. How can we prove that? Since A ⊆ S, this implies 

that P(A) ≤ P(S). We have already proved this, so we can use it here by Theorem 1.1. 

This implies that P(A) ≤ 1, since P(S) = 1. 

Using Axiom 2, which states that P(S) = 1, we can conclude that combining these two 

results gives us P(A) ≤ 1 and P(A) ≥ 0. So, these are very straightforward proofs. 

The next theorem states Theorem 1.3: for the empty set, P(∅) = 0. This is not mentioned 

in the axioms, so we have to prove it. So, Theorem 1.3: for ∅, since ∅ ∈ C (it is an event), 

P(∅) = 0. 

 

 



 

So, P(∅) = 0. ∅ ∈ C. Now, because Sᶜ ∈ C, P(∅) = 0. How can we prove that? So now, if 

you consider S and ∅ as two events, S ∩ ∅ = ∅. 

From Axiom 3, P(S ∪ ∅) = P(S) + P(∅). Now, on the left side, it is nothing but S, so this 

is equal to P(S) + P(∅). The probability of S, we already know, is 1. This is 1 + P(∅), 

which implies P(∅) = 0. So, these are very straightforward, but we want to prove them 

because, without proof, we may not be able to use them in the future. 

 

Whenever we use this, we need to have a proof. So now, the next theorem, Theorem 1.4, 

states that for any event A, the complement of A, A^c, is also an event, and P(A^c) is 

defined. So sometimes A^c is nothing but if S is the sample space, then A^c = S \ A. 



Now, A^c includes all the elements that do not belong to A. This is A^c.

 

We sometimes denote A complement with A', A̅, or simply A^c; it's just a notation. This 

is defined as all elements in S such that S ∉ A. Now, suppose we use A'. It is Theorem 

1.4 that says P(A') or P(A^c) is nothing but 1 − P(A). So, how do we prove that? 

 

So, we can use this relation because A ∪ A^c is nothing but S. Also, A ∩ A^c = ∅. So, 

using Axiom 3, P(A ∪ A^c) = P(A) + P(A^c) by Axiom 3 because they are disjoint, 

which implies that P(A ∪ A^c) = P(S). This is nothing but P(A) + P(A^c), which implies 

that P(A^c) = P(S) − P(A). Since P(S) = 1, we get P(A^c) = 1 − P(A). So, actually, it is a 

typo. 

Sorry, it is a mistake. P(A^c) = 1 − P(A). So, this is Theorem 1.4. Now, let’s move on to 

Theorem 1.5. So, Theorem 1.5 says that for a finite number of mutually exclusive events, 

suppose A₁, A₂, ..., Aₙ are pairwise mutually exclusive events. 



 

 

We can write that P(A₁ ∪ A₂ ∪ ... ∪ Aₙ) = P(A₁) + P(A₂) + ... + P(Aₙ). It seems that this is 

very obvious from Axiom 3. Axiom 3 already mentions it for an infinite number of 

events, but it also covers two events. Therefore, we need to prove it for the finite case as 

well. So, first, let us prove this. 

So, Theorem 1.5 says that let A₁, A₂, Aₙ be a collection of pairwise mutually exclusive 

sets of events. Then, P(A₁ ∪ A₂ ∪ ... ∪ Aₙ) = P(A₁) + P(A₂) + ... + P(Aₙ) is for any finite 

case. Suppose it is infinite; it is given. So then, we have to prove that any finite union will 

also satisfy because they are mutually exclusive. 



 

Let us consider Bᵢ = Aᵢ for i = 1 to n, and Bᵢ = ∅ for i = n+1, n+2, and so on. Hence, we 

have an infinite collection, and they are pairwise mutually exclusive as well. So, this is 

actually a countably infinite collection of pairwise mutually exclusive sets of events. 

They are pairwise mutually exclusive because if you consider any i ≠ j, then the 

intersection of Bᵢ and Bⱼ will be ∅. If i and j are both ≤ n, since A₁, A₂, Aₙ are pairwise 

mutually exclusive, the intersection of Aᵢ and Aⱼ will be ∅ as well. 

For any i or j that is greater than n, one of Bᵢ or Bⱼ will be ∅, leading to an intersection 

that is also ∅. Thus, they are pairwise mutually exclusive events. Hence, using Axiom 3, 

P(B₁ ∪ B₂ ∪ ... ∪ Bₙ) = Σ P(Bᵢ) for i = 1 to n. So, we can write it like this: P(B₁ ∪ B₂ ∪ ... 

∪ Bₙ ∪ Bₙ₊₁ ∪ ...) = Σ P(Bᵢ) for i = 1 to ∞. 

 

Note that, up to B₁, B₂, and Bₙ, it is exactly the same as A₁, A₂, and Aₙ. For any index 

greater than n, Bᵢ is equal to the empty set (∅), which implies that this is equal to P(A₁). 

Since we have an infinite collection of B₁, B₂, ..., Bₙ, we can apply Axiom 3 here. By 

Axiom 3, the probability of the union of B₁, B₂, ..., Bₙ is equal to the sum of the 



probabilities of the individual events, i.e., P(B₁ ∪ B₂ ∪ ... ∪ Bₙ) = Σ P(Bᵢ) for i = 1 to n. 

Now, if we replace the representation of Bᵢ with Aᵢ, we get: P(A₁ ∪ A₂ ∪ ... ∪ Aₙ ∪ Bₙ₊₁ ∪ 

...) = P(A₁) + P(A₂) + ... + P(Aₙ) + P(Bₙ₊₁) + .... Since P(∅) = 0, we can conclude that P(A₁ 

∪ A₂ ∪ ... ∪ Aₙ) = P(A₁) + P(A₂) + ... + P(Aₙ). 

Union with ∅ will yield the same set, and on the right-hand side, it will be P(A₁) + P(A₂) 

+ P(Aₙ), with the remaining terms being all zeros (P(∅) + P(∅) + P(∅)). That is why we 

have proved this result for the finite case as well. So, this is proved. Now, this is why we 

can say that in Axiom 3, we have used it for two events. It is not required for Axiom 3 to 

apply only to infinite events; we can also apply it here. 

 

So, we have proved this finite case. Thus, we can conclude that it is true for finite cases 

as well. Here, we have written this specifically for two finite disjoint sets, stating that 

P(A₁ ∪ A₂) = P(A₁) + P(A₂). This has been established in Theorem 1.5. The next 

important result is that for any two events A and B. 

 

So, A and B are disjoint. Suppose A and B are two events; that means they belong to C, 

such that A ∩ B = ∅. Then, by Axiom 3, also in Theorem 1.5, this applies to finite cases 

as well. P(A ∪ B) = P(A) + P(B) because they are disjoint. Now, if they are not disjoint 

for any two events, A and B, which may or may not be disjoint, then any two events, A 

and B, belong to C, this collection. 



 

The probability of A ∪ B is such that, because it is a σ-field, A ∪ B will also be in the σ-

field. Therefore, it will be considered an event. This is nothing but P(A) + P(B) - P(A ∩ 

B). This is the theorem. This is one of the important theorems. 

 

You know about the addition of two events. They may be disjoint. If they are disjoint, 

then P(A ∩ B) = ∅, and P(∅) = 0. So, in that case, this will be true: P(A ∪ B) = P(A) + 

P(B). 

 

But if we consider general cases, how can we prove it? Suppose we use a Venn diagram. 

Let’s say this is set A and this is set B. This is the sample space S; this is set A, and this is 

set B. This set represents A ∩ B. Now, if you add the probability of A, which is P(A), and 

then add the probability of B, you can see that A ∩ B is counted twice. 

 

Therefore, we need to subtract one instance of A ∩ B to get the probability of A ∪ B. 

Now, we will also prove it analytically. In a Venn diagram, it may not be exact; we may 



not get complete clarity. It is simply a graphical representation. How do we prove it 

analytically? 

 

Let’s again take the help of this graph. Suppose this is S, this is A, this is B, and this is A 

∩ B. Now, if you want to represent A ∪ B, let me clarify. This is S, this is A, and this is 

B. So, we have S as the sample space, A as one event, B as another event, and A ∩ B as 

the overlap between A and B. Suppose you want to find A ∪ B; we want to represent it in 

three different disjoint sets, the union of three different sets. 

 

One set is like this, another set is like this, and the third set is this. The first set can be 

represented as A − (A ∩ B). The second set is A ∩ B, and the third set is B − (A ∩ B). 

We denote these sets as C₁, C₂, and C₃. Thus, A ∪ B can be represented as C₁ ∪ C₂ ∪ C₃, 

where C₁ = A − (A ∩ B), C₂ = A ∩ B, and C₃ = B − (A ∩ B). 

 

Now, C₁ = A − (A ∩ B), C₂ = A ∩ B, and C₃ = B − (A ∩ B). You can easily show that C₁, 

C₂, and C₃ are mutually exclusive events because C₁ is defined by all elements in A that 

are not in A ∩ B, while C₂ is exactly A ∩ B. Therefore, these sets are disjoint. Similarly, 

C₂ and C₃ will also be disjoint, as will C₁ and C₃. This is because the common part is A ∩ 

B. 

 

We are considering all elements in C₁ that are not in A ∩ B, while C₃ includes all 

elements in B that are not in A ∩ B. Therefore, C₁ and C₃ will also be disjoint, and this 

can be shown easily. Additionally, C₁ ∪ C₂ ∪ C₃ can be shown to equal A ∪ B. Thus, 

these sets are disjoint, meaning Cᵢ ∩ Cⱼ = ∅ for i ≠ j. So, using Theorem 1.5, which 



applies to finite disjoint, pairwise mutually exclusive events, we can have this result: 

P(A ∪ B) = P(C₁ ∪ C₂ ∪ C₃). 

 

By using Theorem 1.5, this is the probability of C₁ plus the probability of C₂ plus the 

probability of C₃. Now, what is the probability of C₁? The probability of C₁ is nothing but 

P(A − (A ∩ B)), plus the probability of C₂, which is P(A ∩ B), plus the probability of C₃, 

which is P(B − (A ∩ B)). So, now we apply Theorem 1.1. Since A ∩ B ⊆ A, it is nothing 

but P(A − (A ∩ B)) = P(A) − P(A ∩ B). 

This equals P(A ∩ B) + P(B) − P(A ∩ B). This is using Theorem 1.1. Now, we simplify 

and the P(A ∩ B) terms cancel out. Thus, we finally have P(A) + P(B) − P(A ∩ B). This 

is one of the important results. 

So, there are many applications for finding the probability. Suppose the probabilities of A 

and B, as well as the probability of A ∩ B, are known. Then, we can find the probability 

of A ∪ B. 

 


