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Moments for Bivariate Random Variables 

 

You may recall that when we define the moments for univariate random variables. So, let 

us discuss. Let X be a discrete random variable with the probability mass function 

P_X(x_i), where i ∈ {1, 2, ...}. For some range of x, such as x₁, x₂, x₃, and so on, the k-th 

order moment is defined. As you may recall from our discussion, it is referred to as μᵏ, 

which represents the expected value of x raised to the power of k. Since this is a discrete 

random variable, it is expressed as the summation of xᵏ. 

As you may recall from our discussion, it is referred to as μᵏ, which represents the expected 

value of x raised to the power of k. Since this is a discrete random variable, it is expressed 

as the summation of xᵏ. The k-th order moment is defined by taking each value xᵢ, raising 

it to the power of k, multiplying it by the probability of xᵢ, and summing over all xᵢ. If this 

summation exists, it is referred to as μᵏ. 

Similarly, for bivariate random variables, the concept is defined as well. Let (X, Y) 

represent a bivariate discrete random variable with a probability mass function. The 

probability mass function describes the probabilities for pairs of values, such as xᵢ and yⱼ. 

Here, i takes values like 1, 2, and so on, and j also takes values like 1, 2, and so on. These 

values can either be finite or countably infinite. In the bivariate case, the (k, n)-th order 

moment is defined by considering two integers, k and n, which represent the orders of the 

moments for the two variables. So, the notation for the (k, n)-th order moment is mₖₙ, where 

k and n are positive integers. This is defined as the summation over all possible values of 

xᵢ and yⱼ, since it is a discrete random variable. It involves xᵢ raised to the power of k, yⱼ 

raised to the power of n, and the joint probability of xᵢ and yⱼ. 



This is simply an extension to the bivariate random variable cases. For this case, there are 

some special notations we have already discussed, such as μₓ for the X random variable 

and μᵧ for the Y random variable. Now, let’s consider some values for k, such as 1 or 2, 

and for n, such as 1, 2, and so on. You can also consider 0. So let us consider some of the 

values. Suppose k is 1, 2, and so on, and n is also 1, 2, and so on. 

 

 

 

 

You can also consider 0. If both k and n are 0, then the result becomes 1. Any value of xᵢ 

raised to the power of 0 is 1, and any value of yⱼ raised to the power of 0 is also 1. This is 

simply the summation of the probability mass function, which, by the properties of the joint 

probability mass function, equals 1. Therefore, when both k and n are 0, the result is 1. 

This is essentially the summation of xᵢ and yⱼ, multiplied by the joint probability mass 

function of xᵢ and yⱼ, which also equals 1 due to the properties of the joint probability mass 

function. 

Now, if you consider k as 1 and n as 0, this represents m₁₀. What does that mean? It is 

simply the summation of yⱼ and the summation of xᵢ. If we apply this with n equal to 0, yⱼ 

raised to the power of 0 becomes 1, and xᵢ is raised to the power of 1. Therefore, this 

becomes xᵢ multiplied by the joint probability of xᵢ and yⱼ. 

Now, if we assume that the summation exists and we can interchange the summations, let's 

first consider the sum of yⱼ and the joint probability of xᵢ and yⱼ. By definition, this becomes 

the marginal probability mass function, which is simply the probability mass function of 



xᵢ. By definition, you know that to find the marginal probability mass function, you sum 

over the other variable while fixing xᵢ for any given value of xᵢ. If you take the sum over 

the other variable, yⱼ, you get the probability mass function of xᵢ. Then, if you take the sum 

over xᵢ, you get the probability mass function of xᵢ. This is what you can recall from the 

definition you just wrote. 

So, if you take k as 1, it represents the expected value of X, where X is simply xᵢ. The 

summation of xᵢ multiplied by the probability mass function of xᵢ is nothing but μ₁. 

Therefore, this is equal to μₓ. That is why, when k is 1, m₁₀ is equal to μₓ. Similarly, you 

can show that m₁₀ is also equal to μₓ. 

So, whenever you take k as 0 and n as 1, m₀₁ represents μᵧ. Similarly, you can find this for 

other values as well. So, we can do it also. What we have discussed so far defines the (k, 

n)-th moment of a bivariate random variable (X, Y). The (k, n)-th moment is the expected 

value of X raised to the power of k and Y raised to the power of n. 

 

 

 



 

This is the summation of xᵢ and yⱼ, where xᵢ is raised to the power of k, yⱼ is raised to the 

power of n, and the joint probability mass function of xᵢ and yⱼ is considered. So whenever 

it is a discrete random variable, m₁₀ is nothing but μₓ and m₀₁ is nothing but μᵧ, so that is 

already we have discussed. Now, consider the case when k is 2 and n is 0. In this case, it 

represents m₂₀. By definition, m₂₀ involves xᵢ and yⱼ. The (k, n)-th moment is simply the 

summation over xᵢ and yⱼ. When n is 0 and k is 2, yⱼ raised to the power of 0 becomes 1. 

This is simply xᵢ² multiplied by the joint probability of xᵢ and yⱼ. Here, we assume that the 

summation exists and we can interchange the summations. So, this becomes the summation 

of xᵢ² and yⱼ, multiplied by the joint probability mass function. This sum represents the 

marginal probability mass function of X, which is xᵢ² multiplied by the probability mass 

function of xᵢ. By definition, this is equal to μ₂. 

So, m₂₀ is equal to μ₂. Therefore, we can find the variance of X, which is μ₂ - μ₁². In this 

notation, it becomes m₂₀ - m₁₀². This represents the variance of X. Similarly, you can find 

the same for other variables. In fact, μ₂ refers to the variable X only, and we use the same 

notation for μ₁. 

So, μ₂ we can write as the expected value of X² if you write some notation like for X. 

Suppose this is X, with μ₁ for X. Similarly, the variance of Y will be μ₂ for Y - μ₁ for Y, all 

squared. This is equivalent to m₀₂ - m₀₁². Using this method, we can find the means and 

variances. 

So, now what about m₁₁? Whenever k is equal to 1 and n is equal to 1, we get m₁₁. By 

definition, this is the summation over xᵢ and yⱼ, where xᵢ is raised to the power of 1 and yⱼ 

is raised to the power of 1, multiplied by the joint probability of xᵢ and yⱼ. We may not have 

a simplified form here because this is specifically for bivariate cases. For univariate cases, 

this measure does not exist. 

 



 

 

However, this measure provides an indication of the association between xᵢ and yⱼ, showing 

how x and y change in relation to their values. We will discuss this later. For now, we will 

focus on the similar concept for continuous random variables. Now, you can recall that X 

is a continuous random variable with its probability density function, fₓ(x). The k-th order 

moment has already been discussed in detail. It is referred to as the raw moment. We have 

also covered central moments, which are moments around a point, but here we are only 

focusing on the raw moment. For simplicity, the k-th order moment for X is defined and 

denoted as μₓ or μ₁. Since there are other variables like X, we write it as (X, μ₁). This is 

simply equal to... Apologies for the confusion. This is μʳ, not μ. μₓ refers to the first-order 

moment, but here we are discussing the k-th order moment. 

So, μʳ is equal to the summation for both discrete and continuous random variables. For a 

continuous random variable, it is calculated over the range from -∞ to +∞, with X raised 

to the power r, multiplied by the probability density function fₓ(x). Similarly, for a bivariate 

continuous random variable, the concept will be extended. Let (X, Y) be a bivariate 

continuous random variable with the probability density function fₓᵧ(x, y). The (k, n)-th 

order moment of (X, Y) is defined as follows. 

 



 

 

The expected values are denoted as mₖₙ, which represent the expected values of X raised 

to the power k and Y raised to the power n. This is defined as the integral from -∞ to +∞, 

and from -∞ to +∞, of X raised to the power k, Y raised to the power n, multiplied by the 

joint probability density function fₓᵧ(x, y). This represents the (k, n)-th order moment. 

Similarly, suppose k is equal to 0, 1, 2, and n is equal to 0, 1, 2, and so on. For k = 0 and n 

= 0, we get m₀₀. In this case, the integral goes from -∞ to +∞, and since X raised to the 

power 0 and Y raised to the power 0 equals 1, this becomes the joint probability density 

function fₓᵧ(x, y) integrated over dx and dy. 

 

 

 

By the properties of the joint density function, this should be equal to 1. Now, for k = 1 

and n = 0, we get m₁₀. In this case, the integral again goes from -∞ to +∞. Since k = 0, X 



raised to the power k = 1, and Y raised to the power 0 = 1, the expression simplifies 

accordingly. This is X and Y raised to the power 0, multiplied by the joint probability 

density function fₓᵧ(x, y), integrated over dx and dy. Now, assuming that this integration is 

absolutely summable and exists, we can change the order of integration. 

So, the expression becomes the integral from -∞ to +∞ of X, followed by the integral from 

-∞ to +∞ of fₓᵧ(x, y) with respect to y and then with respect to x. Now, what does this 

represent? You can recall that when we discussed how to find the marginal probability 

density function from the joint probability density function, this is exactly the joint 

probability density function. If you integrate with respect to the variable Y, you will get 

the marginal probability density function, which is fₓ(x) dx. Now, if you compare this with 

the univariate case, suppose k = 1. In that case, you get μ₁ for the variable X, which is the 

integral from -∞ to +∞ of X multiplied by fₓ(x) dx. This is the same as the previous value. 

This is simply μ₁ for X, or we denote it as μₓ. Similarly, m₁₀ is μ₁. Now, when k = 0 and n 

= 1, we get m₀₁. Similarly, you can find that this is the integral from -∞ to +∞, and from -

∞ to +∞, with X raised to the power 0, Y raised to the power 1, and then the joint probability 

density function fₓᵧ(x, y) integrated over dx and dy. If you integrate first with respect to X, 

you will get the result. For the case where k = 0 and n = 1, we get m₀₁. 

 

 

 

This involves integrating from -∞ to +∞, with X raised to the power 0 and Y raised to the 

power 1, multiplied by the joint probability density function fₓᵧ(x, y), over dx and dy. First, 

integrating with respect to X gives the marginal probability density function fᵧ(y). This 

simplifies to the integral from -∞ to +∞ of Y multiplied by fᵧ(y), over dy. So this is nothing 



but ∫ from -∞ to +∞ y fᵧ(y) dy. This formula is the same and is equivalent to μ₁ for the 

random variable Y, or simply denoted as μᵧ. 

Now, if we take k = 2 and n = 0, let us move to the next case where k = 2 and n = 1. What 

we get when n = 0 is m₂₀. This is represented by X raised to the power 2, which is X², and 

Y raised to the power 0, which equals 1, multiplied by the joint probability density function 

fₓᵧ(x, y), integrated over dx and dy from -∞ to +∞. Assuming that the conditions for 

changing the order of integration are satisfied, we can rewrite it as X² multiplied by the 

integral of fₓᵧ(x, y) with respect to Y first, followed by integration with respect to X. This 

is essentially the marginal probability density function of X². 

 

 

 

Following that, it represents the probability density function of X multiplied by dx. 

Ultimately, this corresponds to the second moment about the origin for the random variable 

X. Similarly, you can find that if you take k = 0 and n = 2, you get m₀₂. In the same way, 

this corresponds to the second moment about the origin for the random variable Y. Hence, 

the variance of X can be found as m₂₀ - (m₁₀)². Similarly, the variance of Y is m₀₂ - (m₀₁)². 

 



 

So, these are some of the values. It is very similar to the discrete cases. These values are 

derived in the same way. These values are derived in the same way. This is represented in 

this expression as well. This is the definition, and all the computations are shown here. For 

the discrete random variables X and Y, we obtain μₓ and μᵧ. 

 

 

 

For the discrete random variables X and Y, we obtain μₓ and μᵧ. Similarly, we obtain the 

expected values of X² and Y². For the continuous cases, the values are also provided, and 

μₓ and μᵧ are represented in this manner. Likewise, the expected values of X² and Y² are 

given. Now, we will discuss what happens when k = 1 and n = 1. 



 

 

Suppose k = 1 and n = 1. For the discrete case, we have already written the expression. For 

continuous cases, we integrate from -∞ to +∞. This is essentially the product of x and y, 

multiplied by the joint probability density function f_XY(x, y), integrated over dx and dy. 

There is no other way to find this value for a particular example, but if it exists, we can 

calculate it. 

Now, we cannot relate this to univariate cases because this measure does not exist for 

univariate distributions. It is specific to bivariate cases, and in this context, the measure is 

different. However, this measure is actually significant. We will discuss how we can relate 

two random variables, suppose X and Y. We have a measure of association that shows how 

two variables are related to each other. 

 

 

One such measure is called covariance. Let (X, Y) be a bivariate random variable, which 

could be discrete or continuous. This is the definition of covariance. The covariance of X 



and Y, denoted as Cov(X, Y) or σ(X, Y), is defined by the relation between X and Y. The 

covariance of X and Y is the expected value of the product of (X - μ_X) and (Y - μ_Y). 

By subtracting their means and calculating the first-order moments, we get the covariance 

between X and Y. This can be simplified in a manner similar to variance. So, the expected 

value of (X - μ_X) * (Y - μ_Y) can be written as the product of X and Y, minus μ_X * 

μ_Y. Since the expected value is a linear transformation, we know the properties of the 

expected value. This can be expressed as the expected value of the product of X and Y, 

minus the expected value of X * μ_Y, minus the expected value of Y * μ_X, plus μ_X * 

μ_Y. 

Note that the means of X and Y are constants. So, these are some real numbers after taking 

the expected value; these are some constants. Then, we will apply the properties of the 

expected value again. This is the expected value of the product of X and Y, minus the 

product of μ_X and the expected value of Y. Since μ_X is a constant, multiplying a constant 

by a random variable is equivalent to multiplying the constant by the expected value of that 

random variable. Similarly, μ_Y is a constant, so we subtract the product of μ_Y and the 

expected value of X. 

Finally, we add the product of the means of X and Y, since both are constants. The expected 

value of a constant is constant, so the product of μ_X and μ_Y is constant. Now, if we 

simplify these terms, we find that this is equal to the expected value of the product of X 

and Y, minus μ_X * μ_Y. So, this is the mean of X multiplied by the expected value of Y, 

minus the mean of Y multiplied by the expected value of X, which is just the notation for 

the means of X and Y. So, we find that one of the terms involving the means of X and Y 

cancels out. 

 

 

 



Finally, we get the expected value of the product of X and Y, minus the product of the 

means of X and Y. In our notation, this is represented as the expected value of the product 

of X and Y, which is denoted as m₁₁. This is how we compute the moments. You can see 

that here. So, when k = 1 and n = 1 in both cases, we compute it from the definition. In this 

definition, you can see that this is the case. 

So, if you set k = 1 and n = 1, this is simply the expected value of the product of X and Y, 

since m(k, n) is defined as the expected value of X raised to the power of k multiplied by 

Y raised to the power of n. Finally, m₁₁ - (μₓ * μᵧ) gives us the covariance between X and 

Y. The covariance provides an association between the two random variables, X and Y, 

but it is not unitless. Its value depends on the units we are considering. So, if you change 

the units, the covariance is not bounded, meaning it can take different values. 

 

 

 

It can take any value. So, if you want to compare different random variables, suppose X 

and Y, and another pair, Z and W, and we know the covariance between X and Y, and the 

covariance between Z and W, we might want to compare how X and Y are related by 

covariance and how Z and W are related. However, since they depend on different units of 

measurement, we cannot make a direct comparison. That is why, to make it unitless, a 

different measure is introduced, called the correlation coefficient. The correlation 

coefficient is defined as follows. 

The correlation coefficient is denoted by ρ(X, Y) and is defined as ρ(X, Y) or sometimes 

written as ρ(X, Y) with parentheses. This notation is used, and it is defined by the 

covariance of X and Y divided by the product of the standard deviations of X and Y. We 



can express it as σ(X, Y) / √(σ²(X) * σ²(Y)). The covariance of X and Y is represented by 

σ(X, Y), while σ²(X) represents the variance of X, and σ²(Y) represents the variance of Y. 

Next, we will discuss some properties of covariance, how they are associated, and the 

properties of the correlation coefficient. 

Based on the values of the correlation coefficient, we can determine how X and Y are 

related. We will also explore the properties of the correlation coefficient in the upcoming 

discussion. 

 

 


