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Moments for Bivariate Random Variables

You may recall that when we define the moments for univariate random variables. So, let
us discuss. Let X be a discrete random variable with the probability mass function
P_X(x_i), where i € {1, 2, ...}. For some range of X, such as Xi, Xz, Xs, and so on, the k-th
order moment is defined. As you may recall from our discussion, it is referred to as pk,
which represents the expected value of x raised to the power of k. Since this is a discrete
random variable, it is expressed as the summation of xk,

As you may recall from our discussion, it is referred to as px, which represents the expected
value of x raised to the power of k. Since this is a discrete random variable, it is expressed
as the summation of x¥. The k-th order moment is defined by taking each value x;, raising
it to the power of k, multiplying it by the probability of x;, and summing over all x;. If this
summation exists, it is referred to as px.

Similarly, for bivariate random variables, the concept is defined as well. Let (X, Y)
represent a bivariate discrete random variable with a probability mass function. The
probability mass function describes the probabilities for pairs of values, such as x; and yi;.

Here, i takes values like 1, 2, and so on, and j also takes values like 1, 2, and so on. These
values can either be finite or countably infinite. In the bivariate case, the (k, n)-th order
moment is defined by considering two integers, k and n, which represent the orders of the
moments for the two variables. So, the notation for the (k, n)-th order moment is my,, where
k and n are positive integers. This is defined as the summation over all possible values of
X; and yj, since it is a discrete random variable. It involves X; raised to the power of k, y;
raised to the power of n, and the joint probability of x; and y;.



This is simply an extension to the bivariate random variable cases. For this case, there are
some special notations we have already discussed, such as i for the X random variable
and p, for the Y random variable. Now, let’s consider some values for k, such as 1 or 2,
and for n, such as 1, 2, and so on. You can also consider 0. So let us consider some of the
values. Suppose k is 1, 2, and so on, and n is also 1, 2, and so on.
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You can also consider 0. If both k and n are 0, then the result becomes 1. Any value of x;
raised to the power of 0 is 1, and any value of y; raised to the power of 0 is also 1. This is
simply the summation of the probability mass function, which, by the properties of the joint
probability mass function, equals 1. Therefore, when both k and n are 0, the result is 1.
This is essentially the summation of x; and yj;, multiplied by the joint probability mass
function of x; and y;, which also equals 1 due to the properties of the joint probability mass
function.

Now, if you consider k as 1 and n as 0, this represents mio. What does that mean? It is
simply the summation of y; and the summation of x;. If we apply this with n equal to 0, y;
raised to the power of 0 becomes 1, and Xx; is raised to the power of 1. Therefore, this
becomes x; multiplied by the joint probability of x; and y;.

Now, if we assume that the summation exists and we can interchange the summations, let's
first consider the sum of y;j and the joint probability of x; and y;. By definition, this becomes
the marginal probability mass function, which is simply the probability mass function of



xi. By definition, you know that to find the marginal probability mass function, you sum
over the other variable while fixing x; for any given value of x;. If you take the sum over
the other variable, y;, you get the probability mass function of x;. Then, if you take the sum
over X;, you get the probability mass function of x;. This is what you can recall from the
definition you just wrote.

So, if you take k as 1, it represents the expected value of X, where X is simply x;. The
summation of x; multiplied by the probability mass function of x; is nothing but .
Therefore, this is equal to p. That is why, when k is 1, mio is equal to .. Similarly, you
can show that mio is also equal to L.

So, whenever you take k as 0 and n as 1, me: represents . Similarly, you can find this for
other values as well. So, we can do it also. What we have discussed so far defines the (k,
n)-th moment of a bivariate random variable (X, Y). The (k, n)-th moment is the expected
value of X raised to the power of k and Y raised to the power of n.

*
»
o
~
<

Y

' )
i

= Yyt

‘ "\"

Moments =t

The (k, njth moment of a bivanate r.y. (X, Y) s defined by

Y xty S eardx v) {discrete casc)
m,, = BX'Y") .
| | ¥fasdx. M dxdy  (continuous case)

I nt = O, we obtain the kth moment of X, and if k = 0, we obtain the nth moment of ¥. Thus,

m,o = E(X) = p, and mg, = E[Y) = u,



This is the summation of x; and y;, where x; is raised to the power of k, y; is raised to the
power of n, and the joint probability mass function of x; and yj is considered. So whenever
it is a discrete random variable, mio is nothing but p and mo: is nothing but p,, so that is
already we have discussed. Now, consider the case when k is 2 and n is 0. In this case, it
represents mzo. By definition, mzo involves x; and y;. The (k, n)-th moment is simply the
summation over x; and y;. When n is 0 and k is 2, y; raised to the power of 0 becomes 1.

This is simply x2 multiplied by the joint probability of x; and y;. Here, we assume that the
summation exists and we can interchange the summations. So, this becomes the summation
of X2 and y;, multiplied by the joint probability mass function. This sum represents the
marginal probability mass function of X, which is xi2 multiplied by the probability mass
function of x;. By definition, this is equal to p..

So, mzo is equal to p.. Therefore, we can find the variance of X, which is p - 2 In this
notation, it becomes m2o - mio®. This represents the variance of X. Similarly, you can find
the same for other variables. In fact, p. refers to the variable X only, and we use the same
notation for p.

So, p2 we can write as the expected value of X? if you write some notation like for X.
Suppose this is X, with pu for X. Similarly, the variance of Y will be p2 for Y - i for Y, all
squared. This is equivalent to mo2 - moi2. Using this method, we can find the means and
variances.

So, now what about mi1? Whenever k is equal to 1 and n is equal to 1, we get mii. By
definition, this is the summation over x; and y;, where x; is raised to the power of 1 and y;
is raised to the power of 1, multiplied by the joint probability of x; and y;. We may not have
a simplified form here because this is specifically for bivariate cases. For univariate cases,
this measure does not exist.
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However, this measure provides an indication of the association between x; and y;, showing
how x and y change in relation to their values. We will discuss this later. For now, we will
focus on the similar concept for continuous random variables. Now, you can recall that X
is a continuous random variable with its probability density function, fi(x). The k-th order
moment has already been discussed in detail. It is referred to as the raw moment. We have
also covered central moments, which are moments around a point, but here we are only
focusing on the raw moment. For simplicity, the k-th order moment for X is defined and
denoted as i« or pi. Since there are other variables like X, we write it as (X, pi). This is
simply equal to... Apologies for the confusion. This is pr, not p. i refers to the first-order
moment, but here we are discussing the k-th order moment.

So, pr is equal to the summation for both discrete and continuous random variables. For a
continuous random variable, it is calculated over the range from -oo to +oo, with X raised
to the power r, multiplied by the probability density function fi(x). Similarly, for a bivariate
continuous random variable, the concept will be extended. Let (X, Y) be a bivariate
continuous random variable with the probability density function f,,(X, y¥). The (k, n)-th
order moment of (X, Y) is defined as follows.
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The expected values are denoted as my,, which represent the expected values of X raised
to the power k and Y raised to the power n. This is defined as the integral from -oo to +oo,
and from -oo to +oo, of X raised to the power k, Y raised to the power n, multiplied by the
joint probability density function fy,(X, y). This represents the (k, n)-th order moment.
Similarly, suppose k isequal to 0, 1, 2, and nisequal to 0, 1, 2, and so on. Fork =0and n
=0, we get moo. In this case, the integral goes from -co to +oo, and since X raised to the
power 0 and Y raised to the power 0 equals 1, this becomes the joint probability density
function fi,(X, y) integrated over dx and dy.
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By the properties of the joint density function, this should be equal to 1. Now, for k = 1

and n = 0, we get muo. In this case, the integral again goes from -oo to +oo. Since k = 0, X



raised to the power k = 1, and Y raised to the power 0 = 1, the expression simplifies
accordingly. This is X and Y raised to the power 0, multiplied by the joint probability
density function fi,(X, y), integrated over dx and dy. Now, assuming that this integration is
absolutely summable and exists, we can change the order of integration.

So, the expression becomes the integral from -oo to +o0 of X, followed by the integral from
-0 to +oo of fi,(X, ¥) with respect to y and then with respect to x. Now, what does this
represent? You can recall that when we discussed how to find the marginal probability
density function from the joint probability density function, this is exactly the joint
probability density function. If you integrate with respect to the variable Y, you will get
the marginal probability density function, which is fy(x) dx. Now, if you compare this with
the univariate case, suppose k = 1. In that case, you get . for the variable X, which is the

integral from -oo to +o0 of X multiplied by fi(x) dx. This is the same as the previous value.

This is simply i for X, or we denote it as . Similarly, mio is pu. Now, when k =0 and n
= 1, we get moi. Similarly, you can find that this is the integral from -co to +oo, and from -
o0 to +oo, with X raised to the power 0, Y raised to the power 1, and then the joint probability
density function f,,(X, y) integrated over dx and dy. If you integrate first with respect to X,

you will get the result. For the case where k = 0 and n = 1, we get mo1.
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This involves integrating from -oo to +oo, with X raised to the power 0 and Y raised to the
power 1, multiplied by the joint probability density function fi,(X, y), over dx and dy. First,
integrating with respect to X gives the marginal probability density function f,(y). This
simplifies to the integral from -oo to +oo0 of Y multiplied by f,(y), over dy. So this is nothing



but | from -0 to +o0 y f,(y) dy. This formula is the same and is equivalent to w for the
random variable Y, or simply denoted as ,.

Now, if we take k =2 and n = 0, let us move to the next case where k =2 and n = 1. What
we get when n = 0 is mzo. This is represented by X raised to the power 2, which is X2, and
Y raised to the power 0, which equals 1, multiplied by the joint probability density function
fo(X, y), integrated over dx and dy from -co to +co. Assuming that the conditions for
changing the order of integration are satisfied, we can rewrite it as X2 multiplied by the
integral of fi,(X, y) with respect to Y first, followed by integration with respect to X. This
is essentially the marginal probability density function of X2,

x
FY
3
£
|
3 Y
u /
"Imyl’"

2 4

Following that, it represents the probability density function of X multiplied by dx.
Ultimately, this corresponds to the second moment about the origin for the random variable
X. Similarly, you can find that if you take k = 0 and n = 2, you get mo2. In the same way,
this corresponds to the second moment about the origin for the random variable Y. Hence,

the variance of X can be found as mzo - (mio)?. Similarly, the variance of Y is moz - (mo:)?.
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So, these are some of the values. It is very similar to the discrete cases. These values are
derived in the same way. These values are derived in the same way. This is represented in
this expression as well. This is the definition, and all the computations are shown here. For
the discrete random variables X and Y, we obtain p, and p,.

For the discrete random variables X and Y, we obtain p. and p,. Similarly, we obtain the
expected values of X2 and Y2 For the continuous cases, the values are also provided, and
u. and p, are represented in this manner. Likewise, the expected values of X2 and Y2 are
given. Now, we will discuss what happens when k=1 and n=1.
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Suppose k =1 and n = 1. For the discrete case, we have already written the expression. For
continuous cases, we integrate from -oo to +oo. This is essentially the product of x and vy,
multiplied by the joint probability density function f_XY(X, y), integrated over dx and dy.
There is no other way to find this value for a particular example, but if it exists, we can
calculate it.

Now, we cannot relate this to univariate cases because this measure does not exist for
univariate distributions. It is specific to bivariate cases, and in this context, the measure is
different. However, this measure is actually significant. We will discuss how we can relate
two random variables, suppose X and Y. We have a measure of association that shows how
two variables are related to each other.

Covariance and Correlation Coefficent

» The covariance of X and Y, denoted by Cov(X, Y) or oxy,
is defined by
axy = Cov(X.Y) = E[X—m)Y —py)]
E(XY) -~ E(X)E(Y)

» If Cov(X,Y) = 0, then we say that X and Y are
uncorrelated. We see that X and Y are uncorrelated if

E(XY) = E(X)E(Y)

» The correlation coefficient, denoted by /{X. Y) or pxy, is
defined by
Cov(X.Y) y

oxoy

oxv = p(X. Y) = @

gy

One such measure is called covariance. Let (X, Y) be a bivariate random variable, which
could be discrete or continuous. This is the definition of covariance. The covariance of X



and Y, denoted as Cov(X, Y) or o(X, Y), is defined by the relation between X and Y. The
covariance of X and Y is the expected value of the product of (X - u X) and (Y - n_Y).

By subtracting their means and calculating the first-order moments, we get the covariance
between X and Y. This can be simplified in a manner similar to variance. So, the expected
value of (X - uX) * (Y - u_Y) can be written as the product of X and Y, minus p X *
i_Y. Since the expected value is a linear transformation, we know the properties of the
expected value. This can be expressed as the expected value of the product of X and Y,
minus the expected value of X * p_Y, minus the expected value of Y * p X, plus p X *
p Y.

Note that the means of X and Y are constants. So, these are some real numbers after taking
the expected value; these are some constants. Then, we will apply the properties of the
expected value again. This is the expected value of the product of X and Y, minus the
product of i X and the expected value of Y. Since p_ X is a constant, multiplying a constant
by a random variable is equivalent to multiplying the constant by the expected value of that
random variable. Similarly, p_Y is a constant, so we subtract the product of Y and the
expected value of X.

Finally, we add the product of the means of X and Y, since both are constants. The expected
value of a constant is constant, so the product of p_X and p_Y is constant. Now, if we
simplify these terms, we find that this is equal to the expected value of the product of X
and Y, minus p_ X * p_Y. So, this is the mean of X multiplied by the expected value of Y,
minus the mean of Y multiplied by the expected value of X, which is just the notation for
the means of X and Y. So, we find that one of the terms involving the means of X and Y
cancels out.
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Finally, we get the expected value of the product of X and Y, minus the product of the
means of X and Y. In our notation, this is represented as the expected value of the product
of X and Y, which is denoted as mi1. This is how we compute the moments. You can see
that here. So, when k = 1 and n = 1 in both cases, we compute it from the definition. In this
definition, you can see that this is the case.

So, if you set k =1 and n = 1, this is simply the expected value of the product of X and Y,
since m(k, n) is defined as the expected value of X raised to the power of k multiplied by
Y raised to the power of n. Finally, mi: - (ux * p,) gives us the covariance between X and
Y. The covariance provides an association between the two random variables, X and Y,
but it is not unitless. Its value depends on the units we are considering. So, if you change
the units, the covariance is not bounded, meaning it can take different values.
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It can take any value. So, if you want to compare different random variables, suppose X
and Y, and another pair, Z and W, and we know the covariance between X and Y, and the
covariance between Z and W, we might want to compare how X and Y are related by
covariance and how Z and W are related. However, since they depend on different units of
measurement, we cannot make a direct comparison. That is why, to make it unitless, a
different measure is introduced, called the correlation coefficient. The correlation
coefficient is defined as follows.

The correlation coefficient is denoted by p(X, Y) and is defined as p(X, Y) or sometimes
written as p(X, Y) with parentheses. This notation is used, and it is defined by the
covariance of X and Y divided by the product of the standard deviations of X and Y. We



can express it as 6(X, Y) / V(6*X) * 6*(Y)). The covariance of X and Y is represented by
o(X, Y), while c*(X) represents the variance of X, and 6*(Y) represents the variance of Y.
Next, we will discuss some properties of covariance, how they are associated, and the
properties of the correlation coefficient.

Based on the values of the correlation coefficient, we can determine how X and Y are
related. We will also explore the properties of the correlation coefficient in the upcoming
discussion.
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