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Conditional Mean and Variance for Discrete Random Variables 

 

We will discuss how to find the conditional mean and conditional variance. Previously, we 

explored how to determine the conditional probability mass function for discrete cases and 

the conditional probability density function for continuous random variables. Now, let us 

focus first on discrete random variables. Consider two discrete bivariate random variables, 

X and Y. These variables have a joint probability mass function, P(X, Y), that defines the 

probability of specific values for X and Y occurring together. 

 

 

 

The marginal probability mass function of X describes the probability of each value of X 

occurring, and the marginal probability mass function of Y describes the probability of 

each value of Y occurring. Let X and Y be discrete bivariate random variables with a joint 

probability mass function, P(X = xi, Y = yj), that defines the probability of X taking a value 

xi and Y taking a value yj. The marginal probability mass function of X provides the 



probability of each value of X, P(X = xi), and the marginal probability mass function of Y 

provides the probability of each value of Y, P(Y = yj). If the range of X is finite, it will go 

from 1 to some n, and if the range of Y is finite, it will go from 1 to some m. Otherwise, 

the ranges of X and Y may be countably infinite. 

The conditional probability mass function of Y given that X = xi is defined for any value 

of yj in the range of Y and for a particular value of xi in the domain of X. It is calculated 

as the joint probability of X and Y taking the values xi and yj, respectively, divided by the 

marginal probability of X taking the value xi. This is expressed as: 

P(Y = yj | X = xi) = P(X = xi, Y = yj) / P(X = xi). 

This assumes that P(X = xi) ≠ 0, as dividing by zero is undefined. This is why xi must be 

within the range of X, as only in this case will P(X = xi) be greater than zero. Otherwise, 

P(Y = yj | X = xi) = 0. 

This defines the conditional probability mass function. The conditional mean of Y given 

that X = xi is defined as the expected value of Y under this condition. The conditional 

mean, or conditional expectation, is denoted as E(Y | X = xi) or μ_Y|xi. It represents the 

expected value of Y given that X = xi. The conditional mean is calculated as the summation 

of all values of yj, each multiplied by the conditional probability mass function of Y given 

X = xi: 

E(Y | X = xi) = Σ [yj * P(Y = yj | X = xi)], where the summation is over all possible values 

of yj. 

To simplify, the conditional probability mass function can be expressed as the joint 

probability of X and Y taking specific values, divided by the marginal probability of X 

taking the value xi. Using this, you can first calculate the conditional probability mass 

function and then compute the conditional mean as needed. 

The variance, denoted as σ²_Y|xi, represents the variance of Y given xi. It is calculated as 

the expected value of the square of the difference between Y and the conditional mean of 

Y given xi: 

σ²_Y|xi = E[(Y - E(Y | X = xi))² | X = xi]. 

 



 

 

This formula can be simplified in the same way as before. Let’s write it down here. The 

conditional variance of Y given X = xi is defined as the variance of Y given xi. This is the 

variance of Y given xi, which is the expected value of (Y - E(Y | X = xi))². It can be 

represented as: 

σ²_Y|xi = Σ [(yj - E(Y | X = xi))² * P(Y = yj | X = xi)], 

where the summation is over all possible values of yj. Each value of yj is subtracted from 

the conditional mean of Y given xi, squared, and then multiplied by the conditional 

probability mass function of Y given X = xi. 

This expression can be simplified as the expected value of Y² given xi, minus the square 

of the expected value of Y given xi: 

σ²_Y|xi = E(Y² | X = xi) - (E(Y | X = xi))². 

We have not yet defined the notation, but the expected value of Y given xi can be 

represented with a double notation. The expected value of Y² given xi is: 

E(Y² | X = xi) = Σ [yj² * P(Y = yj | X = xi)], 

where the summation is over all possible values of yj. This is the formula for the conditional 

variance of Y given X = xi. Essentially, the conditional mean and conditional variance can 

be understood by treating the probability mass function as the conditional probability mass 

function. By applying the usual formulas for mean and variance, you can calculate the 

conditional mean and conditional variance. 



Now, you might ask how we can define the conditional mean and variance in the opposite 

direction. If you want to find the conditional mean of X given that Y = yj, you simply swap 

X and Y. That is, you replace X with Y and Y with X. So, the conditional mean of X given 

Y = yj is the expected value of X given yj, which is denoted as: 

E(X | Y = yj). 

 

 

 

It is the sum of all possible values of xi, each weighted by the conditional probability mass 

function of X given Y = yj. Now, for the conditional variance of X given Y = yj, this is 

defined as the variance of X given yj. The conditional variance of X is the expected value 

of (X - E(X | Y = yj))². This can be expressed as: 

σ²_X|yj = Σ [(xi - E(X | Y = yj))² * P(X = xi | Y = yj)], 

where the summation is over all possible values of xi. Each xi is subtracted from the 

conditional mean of X given yj, then squared, and multiplied by the conditional probability 

mass function of X given Y = yj. This expression is similar to the earlier one, but with xi 

and yj swapped. Note that in this case, yj is fixed, just as xi was fixed in the earlier cases. 

For computational purposes, calculating this directly can be complicated, especially with 

numerical examples, as it can be computationally intensive. Therefore, we use the 

simplified formula that we have already shown, which applies to general random variable 

cases. For the conditional probability mass function, the process is similar. It is essentially 

the second-order raw moment of Y², but in this case, it is the second-order raw moment of 



X² given yj, minus the expected value of X given yj, squared. The expected value of X 

given yj has already been denoted as E(X | Y = yj). 

The expected value of X² given yj is defined as: 

E(X² | Y = yj) = Σ [xi² * P(X = xi | Y = yj)], 

where the summation is over all possible values of xi. I hope this clarifies the concept. For 

further understanding, we will need to work through a numerical example. Let us do one 

numerical example. Before moving on to the continuous cases, let’s complete the 

discussion by working through a numerical example. In this example, the joint probability 

mass function of a bivariate random variable (X, Y) is given by Pxy(xi, yj) = k * (2xi + yj). 

 

 

 

This example has already been covered, but we are repeating it to work through additional 

problems related to computing the conditional mean and conditional variances. Although 

this problem has been done before, reviewing it again will help clarify the concepts further. 

You can go back and check the previous solution, but we will work through it again here 

for better understanding. The joint probability mass function of X and Y is given by Pxy(xi, 

yj), not the conditional probability mass function as previously mentioned. The joint 

probability mass function of X and Y is given by Pxy(xi, yj) = k(2xi + yj), where xi ∈ {1, 

2} and yj ∈ {1, 2}. 



 

 

Otherwise, the probability is 0, where k is a constant. We need to find the value of k. To 

find k, we use the properties of the joint probability mass function. Since k is a probability 

mass function, it must always be greater than or equal to 0. We find k using the property 

that the sum of all probabilities must equal 1. 

So, we sum over all possible values of xi (1 and 2) and yj (1 and 2). This gives us: k * Σ(2xi 

+ yj) over all xi and yj values should equal 1. Expanding this, we have: k * [(2(1) + 1) + 

(2(1) + 2) + (2(2) + 1) + (2(2) + 2)]. This simplifies to: 

k * (3 + 4 + 5 + 6) = 1. Thus, k * 18 = 1, which implies k = 1/18. Therefore, the probability 

mass function is 1/18. 

Now, to find the marginal probability mass function of X and Y, the probability mass 

function of X is given by Px(xi) for xi. By definition, this is the sum over all yj values, 

from 1 to 2, of Pxy(xi, yj). However, it will be non-zero only for xi equal to 1 or 2; 

otherwise, the value will be 0. 

 



 

 

Px(xᵢ) = ∑ Pₓᵧ(xᵢ, yⱼ) ∀ yⱼ ∈ {1, 2}. This is (1/18) * (2xᵢ + yⱼ). We can calculate this as: (1/18) 

* (2xᵢ + 1) + (2xᵢ + 2), which simplifies to: (1/18) * (4xᵢ + 3). 

 

Therefore, the marginal probability mass function of X is given by Px(xᵢ) = (4xᵢ + 3) / 18 

for xᵢ ∈ {1, 2}, and 0 otherwise. You can check if this is correct by ∑ over xᵢ = 1 and 2, 

which gives 7/18 + 11/18 = 18/18, confirming that this is a valid probability mass function.  

Next, we will find the marginal probability mass function of Y. We have already worked 

with these values earlier, so you can refer to that or recalculate them if needed. For the 

conditional probability mass function, we will compute the conditional mean and 

conditional variance using the formulas. 

 

We have to first find the conditional probability mass function. Now, the marginal 

probability mass function of Y is given by the probability of Y = yⱼ. This is ∑ Pₓᵧ(xᵢ, yⱼ) ∀ 

xᵢ. The function is non-zero only when yⱼ ∈ {1, 2}; otherwise, the value will be 0. The 

probability of Y = yⱼ is the ∑ Pₓᵧ(xᵢ, yⱼ) ∀ xᵢ. 

 



 

 

This is calculated as (1/18) * (2xᵢ + yⱼ). For xᵢ = 1, we get 2(1) + yⱼ, and for xᵢ = 2, we get 

2(2) + yⱼ. This gives us: 

 

For xᵢ = 1: 2 + yⱼ, 

 

For xᵢ = 2: 4 + yⱼ. 

 

Thus, the marginal probability mass function of Y is given by: P(yⱼ) = (6 + yⱼ) / 18, for yⱼ ∈ 

{1, 2}, and 0 otherwise. You can verify this by checking the probabilities. For yⱼ = 1, P(yⱼ) 

= (6 + 1) / 18 = 7/18, and for yⱼ = 2, P(yⱼ) = (6 + 2) / 18 = 8/18. This confirms that the 

marginal probability mass function is correct. 

 

 



So, the marginal probability mass function of Y is (3 + yⱼ) / 9. I made a mistake earlier, it 

should be 2yⱼ, but now it is 3 + yⱼ. Let me check if this is indeed a valid probability mass 

function. If you sum the probabilities for yⱼ, the total should equal 1. When yⱼ = 1, the value 

is 3 + 1, which is 4. 

 

When yⱼ = 2, the value is 3 + 2, which is 5. Adding these gives 4 + 5, which equals 9. So, 

the sum is 9, and dividing by 9 gives 1, confirming that this is the correct marginal 

probability mass function for yⱼ. Now, are X and Y independent? If X and Y are 

independent, then Pₓᵧ(xᵢ, yⱼ) should be equal to Pₓ(xᵢ) * Pᵧ(yⱼ) ∀ xᵢ, yⱼ values. This should 

hold true ∀ possible values of xᵢ and yⱼ. 

 

To clarify, let's consider some specific values. Suppose xᵢ = 1 and yⱼ = 1. What is Pₓᵧ(1,1)? 

The joint probability Pₓᵧ(1,1) is (1/18) * (2xᵢ + yⱼ). Substituting the values, we get 2 * 1 + 

1, which equals 3. 

 

 

So, Pₓᵧ(1,1) = 3/18. Now, what about Pₓ(1)? Pₓ(1) = (4xᵢ + 3) / 18. For xᵢ = 1, this becomes 

4 * 1 + 3 = 7. So, Pₓ(1) = 7/18. 

 

Next, let's find Pᵧ(1). Pᵧ(1) = (3 + yⱼ) / 9. For yⱼ = 1, this becomes 3 + 1 = 4. So, Pᵧ(1) = 4/9.  

To check for independence, we need to see if Pₓᵧ(1,1) = Pₓ(1) * Pᵧ(1). Pₓ(1) * Pᵧ(1) = (7/18) 

* (4/9) = 28/162 = 14/81. However, Pₓᵧ(1,1) = 3/18 = 1/6. 



 

Clearly, 1/6 ≠ 14/81, so the two sides are not equal. Therefore, we conclude that X and Y 

are not independent random variables. Now, we need to compute the conditional mean and 

conditional variance of Y given that X = 2. To compute these, we need the conditional 

probability mass function. We have already discussed the formulas for conditional mean 

and variance. 

 

 

 

For this, we need the conditional probability mass function of Y given X. The conditional 

probability mass function of Y given X = xᵢ, for specific values of xᵢ and yⱼ, is defined as: 

P(Y = yⱼ | X = xᵢ) = P(xᵢ, yⱼ) / P(X = xᵢ). 

This holds for xᵢ ∈ {1, 2} and yⱼ ∈ {1, 2}. The joint probability mass function is non-zero 

only when xᵢ ∈ {1, 2} and yⱼ ∈ {1, 2}. 

In this case, we are finding the conditional probability mass function for specific values of 

xᵢ and yⱼ. If xᵢ is fixed (e.g., xᵢ = 2), we compute the conditional probability for each yⱼ ∈ 

{1, 2}. The joint probability mass function is given as: 

P(xᵢ, yⱼ) = (1/18) * (2xᵢ + yⱼ). 

This is divided by the marginal probability mass function of X, which we have already 

computed as: 

P(X = xᵢ) = (4xᵢ + 3) / 18. 

So, the conditional probability mass function is: 

P(Y = yⱼ | X = xᵢ) = [(1/18) * (2xᵢ + yⱼ)] / [(4xᵢ + 3) / 18]. 



 

 

 

After canceling, we get the simplified expression: the conditional probability mass function 

of Y given X = xᵢ is the ratio of (2xᵢ + yⱼ) to (4xᵢ + 3). Thus, the conditional probability 

mass function of Y given X = xᵢ is (2xᵢ + yⱼ) / (4xᵢ + 3). This holds when yⱼ ∈ {1, 2}, and 

for the specific values of xᵢ ∈ {1, 2}; it is zero for other cases. 

Now, to compute the conditional mean and conditional variance of Y given X = 2, we 

substitute xᵢ = 2 into the formula for the conditional probability mass function of Y. 

Therefore, the conditional probability mass function of Y given X = 2 is (4 + yⱼ) / 11. 

This expression holds when yⱼ ∈ {1, 2}, and is zero otherwise. Finally, simplifying the 

expression for the conditional probability mass function, we get (yⱼ + 4) / 11 when yⱼ ∈ {1, 

2}, and 0 for other values. 

This shows that the conditional probability mass function is clearly defined, where xᵢ acts 

as a constant parameter and yⱼ is the variable. When xᵢ = 2, the expression becomes a 

probability mass function for yⱼ. For yⱼ = 1, the probability is (4 + 1) / 11 = 5/11, and for yⱼ 

= 2, the probability is (4 + 2) / 11 = 6/11. 

 



 

 

Adding these probabilities gives 5/11 + 6/11 = 11/11 = 1, confirming the correctness of the 

computation. 

Now, for the next step, we need to compute the conditional mean and conditional variance 

of Y given that xᵢ = 2. To do this, we use the definition of conditional mean, which is the 

sum of the possible values of yⱼ multiplied by their respective probabilities. For the 

conditional mean, we multiply each value of yⱼ by its probability. For yⱼ = 1, the probability 

is 5/11, and for yⱼ = 2, the probability is 6/11. 

The conditional mean will be the sum of these values, which is the expected value of Y 

given xᵢ = 2. 

Similarly, the conditional variance can be computed using the formula for variance, which 

involves squaring the difference between each value of yⱼ and the conditional mean, and 

then multiplying by their respective probabilities. This will give the conditional variance 

of Y given xᵢ = 2. 

 


