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Conditional Mean and Variance for Continuous Random Variables 

 

Now, with respect to the conditional probability mass function, we will find the conditional 

mean of Y given X = 2. It is defined as the expected value of Y given X, where xᵢ = 2. So, 

we have μᵧ | 2. By definition, this is Σ (yⱼ * P(Y = yⱼ | X = 2)) for yⱼ ∈ {1, 2}. 

In this case, only this variable is represented, where yⱼ can take the values 1 or 2. That's 

why we have: 

 

1 * P(Y = 1 | X = 2) + 2 * P(Y = 2 | X = 2). 

If we plug in the values, we get: 

1 * (5/11) + 2 * (6/11). 

This gives us: 

 

5/11 + 12/11 = 17/11. 

Now, to find the variance, we will use the simplified formula. The conditional variance is 

defined by the expected value: 

 

σ²ᵧ | 2 = E(Y² | X = 2) - (μᵧ | 2)². 

The formula becomes: 

 

Σ (yⱼ - μᵧ | 2)² * P(Y = yⱼ | X = 2). 



Using this formula is complicated because you have to subtract all possible values from 

17/11 (which is μᵧ | 2), square the result, and then calculate the variance. To simplify, we 

use a simplified formula. This formula involves finding the expected value of Y² | 2, and 

then subtracting the square of the expected value of Y | 2, which we have already found. 

So, we will use the simplified formula: 

 

E(Y² | X = 2) = (1² * P(Y = 1 | X = 2)) + (2² * P(Y = 2 | X = 2)). 

 

 

 

Substituting the values: For yⱼ = 1: 

1² = 1, and P(Y = 1 | X = 2) = (4 + 1) / 11 = 5 / 11. 

So, this term is: 

1 * (5 / 11) = 5 / 11. 

For yⱼ = 2: 

2² = 4, and P(Y = 2 | X = 2) = (4 + 2) / 11 = 6 / 11. 

So, this term is: 

4 * (6 / 11) = 24 / 11. 

Now, adding the two terms together: 

5 / 11 + 24 / 11 = 29 / 11. 

Thus, the expected value of Y² given X = 2 is: 

E(Y² | X = 2) = 29 / 11. 



Now, we can find the variance of Y given X = 2. The formula for variance is: 

Variance = E(Y² | X = 2) - (E(Y | X = 2))². 

We have already calculated E(Y | X = 2) = 17 / 11, so: 

Variance = 29 / 11 - (17 / 11)². 

First, compute the square of 17 / 11: 

(17 / 11)² = 289 / 121. 

Now, subtract: 

29 / 11 - 289 / 121 = (29 * 11) / 121 - 289 / 121 = 319 / 121 - 289 / 121 = 30 / 121. 

So, the variance is approximately: 

Variance ≈ 30 / 121 ≈ 0.248. 

This is the method to compute the conditional mean and conditional variance. Once you 

understand the process, you can perform the necessary calculations using a calculator. I 

hope you have understood it, so for finding the conditional mean and conditional variance. 

 

 

 

You first need to find the conditional probability mass function. Based on that, you can 

compute the conditional mean and conditional variance. In this question, we completed the 

calculation of the conditional mean and conditional variance of Y given X = 2. The 

conditional mean is 17/11, and the conditional variance is calculated as 29/11 - (17/11)², 

which is approximately 0.248. We have now completed the discrete part for finding the 

conditional mean and conditional variance. 



Next, we will discuss the case for continuous random variables. Specifically, we will look 

at how to find the conditional mean and conditional variance for continuous bivariate 

random variables. If X and Y are continuous random variables, then X and Y are a bivariate 

continuous random variable with a joint probability density function. The marginal 

probability density function of X is denoted by fₓ(x), and the marginal probability density 

function of Y is denoted by fᵧ(y). The conditional probability density function of Y given 

X = x is equal to the joint probability density function fₓᵧ(x, y) divided by the marginal 

probability density function fₓ(x), provided that fₓ(x) ≠ 0. 

This calculation is only valid for those values of x where fₓ(x) ≠ 0. 

Now we will define the conditional mean and conditional variance. The conditional mean 

of Y given X = x is defined as the expected value of Y given X = x. This is denoted as μᵧ|ₓ. 

Since we are dealing with continuous variables, we use integration instead of summation, 

which is used for discrete random variables. 

The conditional mean is calculated as: 

μᵧ|ₓ = ∫ y * fᵧ|ₓ(y | x) dy 

The conditional variance of Y given X is defined as the expected value of (Y - μᵧ|ₓ)². This 

is expressed as: 

Var(Y | X = x) = ∫ (y - μᵧ|ₓ)² * fᵧ|ₓ(y | x) dy 

This calculation can be a bit complicated, so we use a simplified formula. The simplified 

formula is: 

Var(Y | X = x) = E(Y² | X = x) - (E(Y | X = x))² 

 

 



We already defined the expected value of Y given X as μᵧ|ₓ. The expected value of Y² given 

X is calculated as the integral from negative infinity to positive infinity of y², multiplied 

by the conditional probability density function of Y given X. Using this formula, we obtain 

the conditional mean and variance for continuous random variables. 

For the continuous bivariate random variable (X, Y), with the joint probability density 

function fₓᵧ(x, y), the conditional mean of Y given X is defined by μᵧ|ₓ, and the conditional 

variance is represented by the expected value of Y² given X minus the square of the 

expected value of Y given X. 

If you want to find the conditional mean and variance of X given Y, you simply swap the 

positions of X and Y. 

The conditional mean of X given Y is the expected value of X given Y, which is 

calculated by integrating x multiplied by the conditional probability density function of X 

given Y. 

The conditional probability density function of X given Y is the joint probability density 

function divided by the marginal probability density function of Y: 

fₓ|ᵧ(x | y) = fₓᵧ(x, y) / fᵧ(y) 

The conditional variance can be found only if the conditional probability density function 

is not equal to zero. If it equals zero, the variance will be undefined. 

Now, how do we compute the conditional variance? The conditional variance of X given 

Y is defined as the variance of X given Y, denoted as σ²ₓ|ᵧ. 

 

 



This is calculated as the expected value of (X - μₓ|ᵧ)². It can be expressed as the integral of 

(X - μₓ|ᵧ)² multiplied by the conditional probability density function of X given Y. Since 

this computation can be complex, we use a simplified formula: the conditional variance is 

the expected value of X² given Y minus the square of the expected value of X given Y. The 

expected value of X given Y is denoted as μₓ|ᵧ, which is the conditional mean, and the 

expected value of X² given Y is the integral of X² multiplied by the conditional density 

function of X given Y. 

For computation, we will use this formula, which can be more convenient for certain 

density functions. Based on my observations, this formula is typically easier to apply when 

finding the conditional variance. 

Let us go through a numerical example for conditional mean and conditional variance. This 

example has been discussed before, so it serves as a revision. You can review it again if 

needed. In this example, we need to find the conditional probability density function (PDF) 

in order to compute the conditional mean and conditional variance. Therefore, we also need 

to compute the marginal functions. 

 

 



 

 

We previously computed these, but we will do it again for clarity. The joint probability 

density function of a bivariate random variable (X, Y) is given by a uniform distribution, 

which is constant when 0 ≤ y ≤ x ≤ 1 and 0 otherwise. This means that the value of the joint 

probability density function is non-zero only in the region where 0 ≤ y ≤ x ≤ 1. If you 

visualize this on a graph, with the axes representing x and y, the region of interest is the 

area below the line y = x from (0, 0) to (1, 1). This region is defined by the condition y ≤ 

x. 

Now, to determine the value of k, we need to ensure that the total probability integrates to 

1. To do this, we integrate the joint PDF over the entire region. The integration will be non-

zero only in the region where 0 ≤ y ≤ x ≤ 1. We start by changing the order of integration 

to simplify the process. This allows us to integrate over y first, from 0 to x, and then over 

x from 0 to 1. 

After performing the integration, we obtain the result k * (x²)/2, evaluated from 0 to 1. This 

simplifies to k/2, and since the total probability must be 1, we set k/2 = 1, which gives k = 

2. Thus, the value of k is 2. So, I quickly completed this because we have already done it 

before. You can go through it again if needed. 

 



 

 

This integration is very simple. The value of k becomes 2 because the area under the curve 

is half of the total area, which is 1/2. This is a triangle with an area of (1/2) * 1 * 1. 

Therefore, to make the total area equal to 1, you must multiply the constant by 2, which 

gives k = 2. Now, let’s quickly find the marginal probability density function of X. 

The marginal probability density function of X is obtained by integrating the joint density 

function with respect to y. The joint density is non-zero only when x is between 0 and 1. 

Outside this range, the joint density becomes zero. For x between 0 and 1, the limit for y is 

from 0 to x because the function is non-zero in this region. Since we have found that k = 

2, the integration becomes 2 * x. 

Therefore, the marginal probability density function of X is: 

f(x) = 2x for 0 ≤ x ≤ 1 

f(x) = 0 otherwise. 

Next, let’s find the marginal probability density function of Y. This is calculated by 

integrating the joint density function with respect to x. 

 

The joint density is non-zero only when y is between 0 and 1. For a particular value of y, 

the lower limit for x is y, and the upper limit is 1. So, the integration becomes 2 * (1 - y). 

Therefore, the marginal probability density function of Y is: 

 

f(y) = 2(1 - y) for 0 ≤ y ≤ 1 

f(y) = 0 otherwise. 



We have already computed these values. Now, the next question is how to find the 

probability when 0 < x < 1/2 and 0 < y < 1/2. 

 

 

 


