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Multivariate Random Variables 

 

Next, we will discuss how to extend the concept of bivariate random variables to 

multivariate random variables. If you have clearly understood how we extended the 

concept from univariate to bivariate random variables, then it is straightforward to extend 

it further. Instead of two variables, we will discuss cases with n random variables. The 

concept of n random variables is important because many random phenomena cannot be 

explained using only one or two random variables. Multiple random variables are often 

needed. In this part, we will explore multivariate random variables. In many situations, a 

single random variable cannot properly explain a particular phenomenon, so we need to 

consider more than one random variable. 

 

For example, when discussing air pollution, a single random variable like particulate matter 

(PM 2.5 or PM 10) is insufficient. To fully explain the situation, we need to account for 

other factors, such as the amount of carbon monoxide, carbon dioxide, nitric oxide, sulfur 

dioxide (SO₂), and other pollutants. This is essential for understanding the greenhouse 

effect, particulate contamination, and similar phenomena. Multivariate responses are 

common in many fields, including social and natural sciences, clinical trials, special 

experiments, ecology, econometrics, and epidemiology. For these reasons, we need to 

extend the concept of bivariate random variables to handle any number of random 

variables. 



 

The extension to multivariate random variables is very straightforward. If you have 

understood bivariate random variables, we will now discuss how to extend the concept 

further. How to extend it from bivariate random variables to multivariate random variable 

cases. Let’s first discuss the bivariate random variable case. Let X and Y be a bivariate 

random variable. How is it defined? 

 

 



 

For a random experiment, we have a sample space S, and a bivariate random variable is 

defined by a measurable function X, Y. For each element s in S, we find a point in R², 

specifically (X(s), Y(s)), which is a vector in R². Therefore, X and Y are bivariate random 

variables, and they are functions from S to R². Each element s ∈ S, and the function is 

measurable, mapping elements to R². Let us consider, instead of X and Y, the random 

variables X₁, X₂, ..., Xn to extend the concept of bivariate random variables to n variables. 

 

 

 

This is a measurable function from the sample space S to Rⁿ. Let X₁, X₂, ..., Xn be a 

measurable function from S to Rⁿ. For each element s ∈ S, (X₁(s), X₂(s), ..., Xn(s)) is 

defined, where each X₁, X₂, ..., Xn are random variables. Therefore, we can extend the 

bivariate random variable concept to define n-tuple random variables. X₁, X₂, ..., Xn is 

called an n-variate random variable or n-dimensional random variable if each Xi associates 

a real number with every sample space element s ∈ S. Therefore, we can extend the 

bivariate random variable concept to define n-tuple random variables. X₁, X₂, ..., Xn is 

called an n-variate random variable or n-dimensional random variable if each Xi associates 

a real number with every sample space element s ∈ S. 

 



 

 

Thus, an n-variate random variable is simply a rule that associates an n-tuple of real 

numbers with every element s ∈ S in the sample space S. Each of the random variables X₁, 

X₂, ..., Xn is a measurable function from S to real numbers. For simplicity, we can consider 

the n-tuple as a column vector. The n-tuple, consisting of X₁, X₂, ..., Xn, is called an n-

variate random variable, which is a measurable function from the sample space S to Rⁿ. 

This is an extension of the concept of bivariate random variables (R²), where R represents 

real numbers and n is a natural number. 

 

If n = 1, it represents a univariate random variable; if n = 2, it represents a bivariate random 

variable; if n = 3, it is a trivariate random variable, and so on. For any number n, the n-

variate random variable is defined in the same manner. We can describe the n-variate 

random variable as a vector, which is a measurable function from the sample space S to 

Rⁿ. This function assigns values to each random variable in the vector, such that each 

random variable Xᵢ is associated with a real number. Therefore, X₁, X₂, ..., Xn are random 

variables, and each of them corresponds to a real number. The entire vector will be an 

element of Rⁿ, making it a measurable function from S to Rⁿ. 

 

The entire vector will be an element of Rⁿ, making it a measurable function from S to Rⁿ. 

Now, analogous to how we define the bivariate random variable and bivariate distribution 

function, we will define the multivariate distribution function. Specifically, we are 

discussing the n-variate cumulative distribution function (CDF). Let X₁, X₂, ..., Xn be an 

n-variate random variable. For simplicity, let us denote this as X₁, X₂, ..., Xn. 



 

 

The joint CDF, or cumulative distribution function, for this n-variate random variable is 

defined similarly to how we defined the bivariate case. Recall that in the bivariate case, the 

CDF of X and Y, denoted as F(x, y), is the probability that X ≤ x and Y ≤ y. If we extend 

this concept to n variables, we replace Y with X₂ and X with X₁, so it becomes the 

probability that X₁ ≤ x₁, and X₂ ≤ x₂, and so on. Thus, for n random variables, the joint CDF 

is defined as the probability that X₁ ≤ x₁, X₂ ≤ x₂, and so on, up to Xn ≤ xn. This can be 

written as: 

 

F(X₁, X₂, ..., Xn) = P(X₁ ≤ x₁, X₂ ≤ x₂, ..., Xn ≤ xn) 

 

The CDF is a joint cumulative distribution function that represents the probability of all 

these events occurring together. It is similar to the bivariate case, but with more variables. 

Similar to the bivariate case, some important properties of the multivariate CDF are the 

same. However, we won't go into all the details here as they can get a bit complicated. 

We have already discussed most of the important properties in the bivariate case. For 

example, the CDF is right-continuous because it is a probability distribution function. 

Additionally, the value of the CDF will always be between 0 and 1. When any of the 

variables tends to infinity, the CDF will tend to 1 because it represents the probability of 

the whole sample space. To explain this more clearly, if all variables (X₁, X₂, ..., Xn) tend 

to infinity, the probability will eventually encompass the entire sample space, and thus the 

CDF will equal 1. 



 

Similarly, if any of the variables (say Xi) tends to negative infinity, the CDF will approach 

0 because this corresponds to a null event (the event that never happens). These properties 

are similar to those in the bivariate case. We will only focus on the properties that are most 

useful for our future discussions and applications. Now, let's discuss how to obtain the 

marginal probability distribution functions. For example, in the bivariate case, suppose X₁ 

and X₂ are bivariate random variables. 

 

 

 

In this case, marginal means a subset of the random variables, such as X₁ or X₂. These 

subsets represent the variables we are interested in. If we consider three variables, the 

subsets of these variables could be {X₁, X₂}, {X₁, X₃}, or {X₂, X₃}. In general, for any 

random variables X₁, X₂, X₃, etc., the subsets of these variables form possible 

combinations. To find the joint distribution function for these subsets, we refer to it as the 

marginal distribution. 

 

For instance, suppose we have the joint probability distribution function for X₁, X₂, ..., Xn. 

This joint probability mass function is known to us for any values of X₁, X₂, ..., Xn in the 

space Rⁿ. Now, if we want to find the marginal probability mass function of only X₁, X₂, 

..., Xn₋₁ (a subset), we are interested in the joint probability distribution of just X₁, X₂, ..., 

Xn₋₁, without considering the nth random variable. This can be represented as the 

probability that X₁ ≤ x₁, X₂ ≤ x₂, and so on, up to Xn₋₁ ≤ xn₋₁. This probability can be 

thought of as the intersection of the event with the sample space S. 



 

Therefore, this probability is the same as taking the limit of the probability as the nth 

variable tends to infinity. In other words, the probability that X₁ ≤ x₁, X₂ ≤ x₂, ..., Xn₋₁ ≤ 

xn₋₁, and Xn ≤ xn becomes the same as the limit of the joint cumulative distribution 

function as Xn tends to infinity. As Xn goes to infinity, this becomes an almost certain 

event, covering the entire sample space. Thus, the marginal distribution of X₁, X₂, ..., Xn₋₁ 

can be found by taking the limit of the joint cumulative distribution function of X₁, X₂, ..., 

Xn as Xn tends to infinity.  

Similarly, for any subset of variables, you can find the marginal distribution by taking the 

limit of the other variables as they tend to infinity. 

For example, if you have a subset of variables, say {Xα₁, Xα₂, ..., Xαᵤ}, you would take the 

limit of the remaining variables as they tend to infinity to obtain the marginal distribution 

for this subset. In particular cases, if you want to find the marginal distribution for just one 

variable, say X₁, you would take the limit of all other variables (X₂, X₃, ..., Xn) tending to 

infinity. This would allow you to compute the marginal probability distribution function of 

X₁. To find the marginal probability distribution function of X₁, you can follow a similar 

approach for other cases. For example, suppose you want to find the marginal distribution 

function for two random variables, Xᵢ and Xⱼ, where i ≠ j. 

 

 

 

In this case, you would take the limit of all other variables except Xᵢ and Xⱼ as they tend to 

infinity. Specifically, you would take the following limits: X₁ tends to infinity, X₂ tends to 

infinity, and so on for all other variables except for Xᵢ and Xⱼ. This would allow you to 



compute the marginal cumulative distribution function for Xᵢ and Xⱼ. The other variables 

are taken to infinity to remove their influence on the joint distribution. It's important to note 

that infinity is not a real number but a notation indicating that the variables are tending to 

extreme values. 

 

Thus, the marginal cumulative distribution function is obtained by taking these limits, 

rather than directly replacing values with infinity. This concept is similar to the previous 

extension, where we take the limits of the variables we are not interested in, leaving only 

the subset of random variables that we want to analyze. Now, let's discuss how to determine 

if X₁, X₂, ..., Xn are independent random variables. Similar to the bivariate case, if the joint 

cumulative distribution function of X₁, X₂, ..., Xn can be expressed as the product of their 

marginal distribution functions, then we can conclude that the random variables are 

independent. For example, if the joint cumulative distribution function of X₁, X₂, ..., Xn 

can be written as the product of their individual marginal distribution functions, then X₁, 

X₂, ..., Xn are independent random variables with respect to the distribution function. 

 

 

 

Now, let's discuss the case where all the random variables are discrete random variables, 

such as X₁, X₂, ..., Xn. In the bivariate case, we discussed the joint probability mass 

function. Similarly, we will now discuss the joint probability mass function for discrete 

random variables X₁, X₂, ..., Xn. When X₁, X₂, ..., Xn are discrete random variables, we 

refer to them as an n-variate random variable or an n-dimensional random vector. In this 

case, the probability mass function applies to the discrete random variables X₁, X₂, ..., Xn. 



You may remember that for two random variables, X and Y, we define the joint probability 

mass function as the probability that X = x₁ and Y = y₂. 

 

In a similar manner, we extend this concept to n random variables. The joint probability 

mass function of X₁, X₂, ..., Xn is defined as the probability that X₁ = x₁, X₂ = x₂, and so on 

up to Xn = xn. This is the joint probability mass function for X₁, X₂, ..., Xn. Now, if we 

know the joint probability mass function, we can proceed to find the marginal probability 

mass function, just as we did in the bivariate case. This is the joint probability mass function 

for X₁, X₂, ..., Xn. Now, if we know the joint probability mass function, we can proceed to 

find the marginal probability mass function, just as we did in the bivariate case. Now, if 

you want to find the marginal probability of X₁, you need to sum over the other variables. 

 

 

By fixing X₁, you can calculate the probability that the other variables take their respective 

values. This summing process is how we find the marginal probability mass function. 

Similarly, if you want to find the marginal probability mass function for Yⱼ, you will sum 

over the other variables, fixing Yⱼ. If you want to find the marginal probability mass 

function for a subset of the random variables, such as X₁, X₂, ..., Xn₋₁, you will sum over 

the other variables. In this case, the marginal probability mass function of the subset will 

be derived from the joint probability mass function. 

 

For example, if the joint probability mass function P(X₁, X₂, ..., Xn₋₁) is known, and you 

want to find the marginal probability mass function for this subset, you sum over the 

appropriate variables. Similarly, if you are only interested in X₁, you would sum over all 



the other variables (X₂, X₃, ..., Xn) to find the marginal probability mass function for X₁. 

So, if you want to find the marginal probability mass function for any specific variable, 

such as X₁, you need to sum over all the other variables. For example, to find the marginal 

probability of X₁ = x₁, you would sum over the other variables (X₂, X₃, ..., Xn). This means 

summing the joint probability mass function P(X₁, X₂, ..., Xn) over the values of all other 

variables. 

 

 

For any i-th variable, if you want to find its marginal probability mass function, you would 

sum over all the variables except the i-th one. For instance, if you want to find the marginal 

probability mass function for X₁, you would sum over X₂, X₃, ..., Xn in the joint probability 

mass function P(X₁, X₂, ..., Xn). To generalize, if you are looking for the marginal 

probability mass function for a subset, say {X₁, X₂}, you would sum over the remaining 

variables {X₃, X₄, ..., Xn} in the joint probability mass function P(X₁, X₂, ..., Xn). This is 

how you can find the marginal distribution from the joint probability mass function. The 

properties of the joint probability mass function are similar to those in the bivariate case 

because it is a probability distribution. 



 

 

Therefore, the joint probability mass function for the random variables X₁, X₂, ..., Xn will 

always be greater than or equal to 0. Next, suppose you want to find the cumulative 

distribution function (CDF) from this joint probability mass function. The joint CDF of the 

random vector X₁, X₂, ..., Xn can be found by summing the probability mass function up 

to the values of X₁, X₂, ..., Xn. This is represented as the probability that X₁ ≤ x₁, X₂ ≤ x₂, 

and Xn ≤ xn. The sum will include all values less than or equal to the specified values of 

X₁, X₂, ..., Xn. 

As with the bivariate case, there are some important properties: The sum of all values of 

the joint probability mass function will always equal 1. This is because it represents a 

probability distribution. The joint probability mass function is non-negative, meaning it 

will always be greater than or equal to 0. The third property involves considering all 

possible values of X₁, X₂, ..., Xn. 

If you denote the values of X₁, X₂, ..., Xn as u₁, u₂, ..., un, the probability mass function for 

the values less than or equal to these values will be non-zero. This helps in understanding 

how the joint probability mass function works across different possible values. This 

concept is essentially an extension of the bivariate case to the multivariate case. Once you 

understand the bivariate case, the transition to the multivariate case becomes 

straightforward. 

Next, we will discuss the joint probability density function (PDF) when the random 

variables X₁, X₂, ..., Xn are continuous. We'll explore its properties and how we can find 

the marginal distributions, as well as discuss the concept of independence for continuous 

random variables. With respect to discrete random variables, if X₁, X₂, ..., Xn are 



independent, then the joint probability mass function of X₁, X₂, ..., Xn is the product of the 

individual probabilities. Specifically, this is the probability that X₁ = x₁, X₂ = x₂, and Xn = 

xn. Since the variables are independent, the joint probability mass function is the product 

of the individual probabilities: P(X₁ = x₁) * P(X₂ = x₂) * ... * P(Xn = xn). 

 

 

 

In notation, this can be written as P(X₁ = x₁) * P(X₂ = x₂) * ... * P(Xn = xn). Note that X₁, 

X₂, and Xn are random variables, which are measurable functions from the sample space 

(S) to the set of real numbers. On the other hand, x₁, x₂, and xn are specific real numbers. 

This product can be simplified in a short form as the product of the individual probabilities, 

written as the product from i = 1 to n of P(Xᵢ = xᵢ). Next, we will discuss continuous random 

variables, focusing on multivariate random variables. 

We will explore how joint probability density functions are defined for these variables. The 

concept is very similar to the bivariate case, and the joint probability density function for 

continuous variables will be an extension of that. We will also discuss the properties of 

these joint probability density functions, and how independence is defined for continuous 

random variables. It's important to note that this holds true for all values of X₁, X₂, ..., Xn, 

not just particular values. 



 


