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Moments of a Multivariate Random Variable 

 

Let Y₁, Y₂, ..., Yₙ be continuous random variables with the joint probability density 

function, denoted as f(y). This can be explicitly written as f(y₁, y₂, ..., yₙ). The marginal 

probability density function of Yᵢ is denoted as fᵧᵢ(yᵢ). If the random variables Y₁, Y₂, ..., 

Yₙ are independent, their joint probability density function can be expressed as the product 

of their marginal probability density functions. This is similar to the discrete case, where 

the joint probability mass function is the product of the marginal probability mass 

functions. 

In simplified notation, the joint probability density function can be written as: 

f(y₁, y₂, ..., yₙ) = fᵧ₁(y₁) * fᵧ₂(y₂) * ... * fᵧₙ(yₙ). 

It is important to note that this holds for all values of yᵢ, where i = 1, 2, ..., n. If this condition 

is satisfied, we say that Y₁, Y₂, ..., Yₙ are independent continuous random variables. 

In summary, for continuous random variables, the joint probability density function can be 

represented as the product of their marginal probability density functions when the random 

variables are independent, just as in the discrete case where the joint probability mass 

function is the product of the marginal probability mass functions. 

 



 

 

Let Y₁, Y₂, ..., Yₙ be continuous random variables, where each Yᵢ follows a normal 

distribution with mean μᵢ and variance σ². For simplicity, let σ² = 1, though it can take any 

value. If the means μᵢ are different for each i, then the random variables are not identically 

distributed. The probability density function (PDF) of each Yᵢ, a normally distributed 

random variable, is given by: 

fᵧᵢ(yᵢ) = (1 / √(2π)) * e^(- (yᵢ - μᵢ)² / 2σ²), where σ² = 1. 

Here, Yᵢ can take any value between minus infinity and plus infinity for i = 1 to n. Now, if 

Y₁, Y₂, ..., Yₙ are independent random variables, the joint probability density function 

(PDF) of Y₁, Y₂, ..., Yₙ can be obtained by the product of their marginal probability density 

functions. By definition of independence, the joint PDF is: 

fᵧ(y) = fᵧ₁(y₁) * fᵧ₂(y₂) * ... * fᵧₙ(yₙ). 

Substituting the expression for each marginal PDF: 

fᵧ₁(y₁) = (1 / √(2π)) * e^(-(y₁ - μ₁)² / 2), 

fᵧ₂(y₂) = (1 / √(2π)) * e^(-(y₂ - μ₂)² / 2), 

... 

fᵧₙ(yₙ) = (1 / √(2π)) * e^(-(yₙ - μₙ)² / 2). 

Multiplying these expressions together, we get: 

fᵧ(y) = (1 / (2π)^(n / 2)) * e^(- Σ (yᵢ - μᵢ)² / 2), 

where the summation is taken over i = 1 to n, and Yᵢ can take any value from minus 

infinity to plus infinity for each i. 



This is the joint probability density function for independent normal random variables. If 

the random variables are not independent, this expression would not represent the correct 

joint probability density function. In future discussions, we will explore how to find the 

joint PDF when the random variables are not independent, and how the multivariate 

distribution changes in such cases. Now, we will discuss the moments of multivariate 

random variables. 

 

 

 

We have already discussed moments for the bivariate case, and the concept extends 

straightforwardly to the multivariate case. Let us first define the mean of multivariate 

random variables. Let X₁, X₂, ..., Xₙ be a set of multivariate discrete random variables with 

a joint probability mass function. If the variables are independent, we can find their joint 

probability mass function by using the product of their marginal distributions. However, if 

they are not independent, we need to know the joint probability mass function explicitly. 

 



 

 

Let us assume the joint probability mass function is given by P(x₁, x₂, ..., xₙ). Now, consider 

a random variable Y, which is a function of the multivariate random variables X₁, X₂, ..., 

Xₙ. Specifically, Y = g(X₁, X₂, ..., Xₙ), where g is a function that maps ℝⁿ to ℝ. This 

transformation will be explained in a later chapter, but for now, we focus on finding the 

expected value of Y. The expected value of Y, denoted as E[Y], is defined as the sum of 

all possible values that Y can take, weighted by their respective probabilities: E[g(X₁, X₂, 

..., Xₙ)] = Σ (g(x₁, x₂, ..., xₙ) * P(x₁, x₂, ..., xₙ)). 

Here, P(x₁, x₂, ..., xₙ) is the joint probability mass function, and g(x₁, x₂, ..., xₙ) represents 

the transformation applied to the variables. Now, let's focus on the mean of the random 

variable Xᵢ. The expected value of Xᵢ, denoted as μᵢ, is given by: μᵢ = E[Xᵢ] = Σ (xᵢ * P(x₁, 

x₂, ..., xₙ)). 

In this case, we treat g(x₁, x₂, ..., xₙ) as equal to xᵢ, and we sum over all possible values of 

x₁, x₂, ..., xₙ, except for xᵢ, which we are focusing on. Since Xᵢ is independent of the other 

random variables X₁, ..., Xᵢ₋₁, Xᵢ₊₁, ..., Xₙ, we can separate the sum for Xᵢ from the others. 

Thus, the expected value of Xᵢ simplifies to: μᵢ = Σ (xᵢ * P(xᵢ)), where P(xᵢ) is the marginal 

probability mass function of Xᵢ. 

This is the standard definition of the mean of a random variable. We can use this general 

definition to calculate the mean in univariate cases, as well as to find other moments. 

Similarly, we can extend this approach to find the variance of Xᵢ using the general 

definition of expected value and the corresponding transformations. Similarly, we can 

extend this approach to find the variance of Xᵢ using the general definition of expected 

value and the corresponding transformations. The variance (σ²) of a random variable Xᵢ is 



given by the expected value of (Xᵢ - μᵢ)², where μᵢ is the mean of Xᵢ. To compute the 

variance, we can use the general formula for the expected value of a function. 

 

 

 

Let's consider the function g(x₁, x₂, ..., xₙ) = (Xᵢ - μᵢ)². To find the variance, we will apply 

this function to the general formula for the expected value: E[(Xᵢ - μᵢ)²] = Σ (g(x₁, x₂, ..., xₙ) 

* P(x₁, x₂, ..., xₙ)). 

Here, g(x₁, x₂, ..., xₙ) = (Xᵢ - μᵢ)², and P(x₁, x₂, ..., xₙ) is the joint probability mass function. 

We can separate out the i-th variable (Xᵢ) from the sum, since it is independent of the other 

random variables. 

Thus, the formula simplifies to: E[(Xᵢ - μᵢ)²] = Σ (xᵢ - μᵢ)² * Pₓᵢ(xᵢ), where Pₓᵢ(xᵢ) is the 

marginal probability mass function of Xᵢ. 

This is similar to the previous calculation for the mean. We can further simplify this 

expression using the formula for variance: Var(Xᵢ) = E[Xᵢ²] - (E[Xᵢ])². 

The expected value of Xᵢ² is denoted as μ₂ᵢ' and the expected value of Xᵢ is μ₁ᵢ. So, the 

variance of Xᵢ can be written as: Var(Xᵢ) = μ₂ᵢ' - (μ₁ᵢ)². 

This is the general definition of the variance for the i-th random variable. 

If we need to compute the variance for all random variables, we can apply the same logic 

to each variable individually. 



Now, in the case of multivariate random variables, we are also interested in how different 

random variables relate to each other. For example, if we have two random variables Xᵢ 

and Xⱼ, we define their covariance to measure how they are related. The covariance between 

Xᵢ and Xⱼ is denoted as σᵢⱼ, and it is calculated as: Cov(Xᵢ, Xⱼ) = E[(Xᵢ - μᵢ)(Xⱼ - μⱼ)]. 

This measures the relationship between the two variables, indicating whether they vary 

together (positive covariance) or in opposite directions (negative covariance). 

For bivariate cases, we discussed covariance in detail, and we will continue to use the same 

concept when dealing with multivariate random variables. By definition, the covariance 

between two random variables Xᵢ and Xⱼ is given by: Cov(Xᵢ, Xⱼ) = E[(Xᵢ - μᵢ)(Xⱼ - μⱼ)], 

where μᵢ and μⱼ are the means of Xᵢ and Xⱼ, respectively. 

 

 

 

This is the covariance for any i and j, where i, j ∈ {1, 2, ..., n}. Note that i and j can be 

equal, in which case the covariance simplifies to: Cov(Xᵢ, Xᵢ) = E[(Xᵢ - μᵢ)²], which is 

simply the variance of Xᵢ (σᵢ²). 

So, when i ≠ j, the result is the covariance between Xᵢ and Xⱼ. This can also be written as: 

Cov(Xᵢ, Xⱼ) = E[Xᵢ * Xⱼ] - μᵢ * μⱼ. 

We also discussed earlier that covariance is not a unit-less quantity, which means that we 

cannot directly compare the covariance of different sets of random variables. To address 

this, we need a standardized measure that can be compared across different random 

variables. This is where the correlation coefficient comes in. 



The correlation coefficient between two random variables Xᵢ and Xⱼ, denoted as ρᵢⱼ, is 

defined as: ρᵢⱼ = Cov(Xᵢ, Xⱼ) / (σᵢ * σⱼ), where σᵢ and σⱼ are the standard deviations (the 

square root of the variance) of Xᵢ and Xⱼ, respectively. 

The correlation coefficient is unit-less, making it comparable across different pairs of 

random variables. It ranges from -1 to 1, where: ρᵢⱼ = 1 indicates a perfect positive 

correlation. 

ρᵢⱼ = -1 indicates a perfect negative correlation. ρᵢⱼ = 0 indicates no correlation. 

This provides a more standardized way to understand the relationship between two random 

variables. 

If i = j, then the correlation coefficient is 1, because the covariance between a random 

variable and itself is simply the variance, and when divided by the product of the standard 

deviations (which are the same), the result is 1. This is because: Cov(Xᵢ, Xᵢ) = σᵢ², and ρᵢᵢ = 

Cov(Xᵢ, Xᵢ) / (σᵢ * σᵢ) = σᵢ² / (σᵢ * σᵢ) = 1. 

So, for i ≠ j, the correlation coefficient represents the relationship between two different 

random variables, Xᵢ and Xⱼ. In the slide, the notation was changed to Zᵢ and Zⱼ instead of 

Xᵢ and Xⱼ. The concept remains the same. The correlation coefficient between Zᵢ and Zⱼ is 

given by: ρᵢⱼ = Cov(Zᵢ, Zⱼ) / (σᵢ * σⱼ). 

This is the same as the covariance and correlation coefficient between two random 

variables, just with different variable names. 

For bivariate cases, we already discussed that we are considering two random variables at 

a time. In this case, we are looking at the correlation coefficient between two random 

variables, Xᵢ and Xⱼ. If the correlation coefficient, ρᵢⱼ, is close to 1, it indicates that there is 

a strong positive linear relationship between the two variables. 

 



 

 

 

This means that as one variable increases, the other will also increase, and the data points 

will lie close to a straight line. If the correlation coefficient, ρᵢⱼ, is close to -1, it indicates a 

strong negative linear relationship. In this case, as one variable increases, the other will 

decrease, and the data points will form a straight line with a negative slope. 

The correlation coefficient is always between -1 and 1, and this property is shown by the 

Cauchy-Schwarz inequality. Although we won’t go into the details here, it’s important to 

note that the correlation coefficient plays a significant role in understanding the 

relationship between two random variables. 

When the correlation coefficient is close to 1, the relationship between the variables is 

positive and linear, and when it is close to -1, the relationship is negative and linear. If the 

correlation coefficient is close to 0, this indicates that there is no linear relationship between 

the variables. In this case, the data may have a more complex, non-linear relationship, such 

as a circular pattern or fluctuations without a clear trend. 



This concludes the concept of moments. We have discussed the first-order and second-

order moments. 

 

 

 

Since we are dealing with multivariate random variables, higher-order moments can be 

more complicated to discuss. Therefore, we focused on the first-order moment, which is 

the mean (μᵢ), and the second-order moment, which is the variance (σᵢ²). Additionally, we 

explored how these moments relate to each other, specifically through covariance (Cov(Xᵢ, 

Xⱼ)) and the correlation coefficient (ρᵢⱼ), which measure how random variables are 

correlated with each other. 

 


