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Numerical Examples on Joint Probability Mass Functions 

 

Let us discuss some numerical examples using multiple random variables. Let X₁, X₂, X₃, 

and X₄ be a four-dimensional random vector, where each Xₖ is an independent Poisson 

random variable with a parameter of 2. Let X₁, X₂, X₃, and X₄ be four random variables, 

where X₃ and X₄ are independent Poisson random variables, each with a Poisson 

distribution with parameter λ = 2. Therefore, X₁, X₂, X₃, and X₄ form a 4-dimensional 

random vector, with each Xₖ being an independent Poisson random variable with parameter 

2. Since they are independent, we can state that X₁, X₂, X₃, and X₄ are independent and 

identically distributed (i.i.d) random variables. The probability mass function (PMF) for 

each Xᵢ is given by the formula for the Poisson distribution: 

P(Xᵢ = xᵢ) = (e^(-λ) * λ^xᵢ) / (xᵢ!), where λ = 2 and xᵢ = 0, 1, 2, .... 

 

 

 

 



Since all the random variables are i.i.d., the PMF is the same for each Xᵢ, where λ = 2: 

P(Xᵢ = xᵢ) = e^(-2) * 2^xᵢ / x!, for xᵢ = 0, 1, 2, ... 

Now, let's calculate the probability that X₁ = 1, X₂ = 3, X₃ = 2, and X₄ = 1. Since the 

variables are independent, the joint probability is the product of the individual probabilities: 

P(X₁ = 1, X₂ = 3, X₃ = 2, X₄ = 1) = P(X₁ = 1) * P(X₂ = 3) * P(X₃ = 2) * P(X₄ = 1) 

We now calculate each individual probability using the Poisson PMF: 

For X₁ = 1: 

P(X₁ = 1) = e^(-2) * 2¹ / 1! = e^(-2) * 2 

For X₂ = 3: 

P(X₂ = 3) = e^(-2) * 2³ / 3! = e^(-2) * 8 / 6 = e^(-2) * 4/3 

For X₃ = 2: 

P(X₃ = 2) = e^(-2) * 2² / 2! = e^(-2) * 4 / 2 = e^(-2) * 2 

For X₄ = 1: 

P(X₄ = 1) = e^(-2) * 2¹ / 1! = e^(-2) * 2 

Now, multiply all the individual probabilities: 

P(X₁ = 1, X₂ = 3, X₃ = 2, X₄ = 1) = e^(-2) * 2 * e^(-2) * 4/3 * e^(-2) * 2 * e^(-2) * 2 

= e^(-8) * 2⁴ * 4 / 3 

= e^(-8) * 16 * 4 / 3 

= e^(-8) * 32 / 3 

Thus, the joint probability is: 

P(X₁ = 1, X₂ = 3, X₃ = 2, X₄ = 1) = (32 / 3) * e^(-8) 

This is the exact probability in its simplest form. You can also use a calculator to find the 

decimal value if needed. Otherwise, this expression is sufficient as the answer. 

Now, let's move on to the next question, which asks to find the probability that exactly one 

of the Xₖ's equals 0. The random variables involved are X₁, X₂, X₃, and X₄, and we need to 

find the probability that exactly one of these variables is equal to 0. This means one of the 



Xₖ's will take the value 0, and the other three will take values greater than 0. Since there 

are four random variables, there are four possible ways this can happen: 

 

 

 

 

X₁ = 0, X₂ ≠ 0, X₃ ≠ 0, X₄ ≠ 0 

X₁ ≠ 0, X₂ = 0, X₃ ≠ 0, X₄ ≠ 0 

X₁ ≠ 0, X₂ ≠ 0, X₃ = 0, X₄ ≠ 0 

X₁ ≠ 0, X₂ ≠ 0, X₃ ≠ 0, X₄ = 0 

These are mutually exclusive events, so we can sum the probabilities of each of them. 

The probability of each event can be written as the product of the marginal probabilities: 

P(X₁ = 0, X₂ ≠ 0, X₃ ≠ 0, X₄ ≠ 0) = P(X₁ = 0) * P(X₂ ≠ 0) * P(X₃ ≠ 0) * P(X₄ ≠ 0) 

P(X₁ ≠ 0, X₂ = 0, X₃ ≠ 0, X₄ ≠ 0) = P(X₁ ≠ 0) * P(X₂ = 0) * P(X₃ ≠ 0) * P(X₄ ≠ 0) 

P(X₁ ≠ 0, X₂ ≠ 0, X₃ = 0, X₄ ≠ 0) = P(X₁ ≠ 0) * P(X₂ ≠ 0) * P(X₃ = 0) * P(X₄ ≠ 0) 

P(X₁ ≠ 0, X₂ ≠ 0, X₃ ≠ 0, X₄ = 0) = P(X₁ ≠ 0) * P(X₂ ≠ 0) * P(X₃ ≠ 0) * P(X₄ = 0) 

Since the random variables are independent, we can use their individual probabilities to 

compute the joint probability. 

 

Now, let's break down how to calculate these probabilities: 

P(Xᵢ = 0) for any random variable Xᵢ is the probability that the Poisson random variable 

equals 0. 



From the Poisson distribution with parameter λ = 2, we know: 

P(Xᵢ = 0) = e^(-2) * 2⁰ / 0! = e^(-2) 

P(Xᵢ ≠ 0) is the complement of P(Xᵢ = 0), so: 

P(Xᵢ ≠ 0) = 1 - P(Xᵢ = 0) = 1 - e^(-2) 

Since all Xᵢ's are i.i.d., we can apply these probabilities to each term in the sum: 

P(X₁ = 0, X₂ ≠ 0, X₃ ≠ 0, X₄ ≠ 0) = e^(-2) * (1 - e^(-2))³ 

P(X₁ ≠ 0, X₂ = 0, X₃ ≠ 0, X₄ ≠ 0) = (1 - e^(-2)) * e^(-2) * (1 - e^(-2))² 

P(X₁ ≠ 0, X₂ ≠ 0, X₃ = 0, X₄ ≠ 0) = (1 - e^(-2))² * e^(-2) * (1 - e^(-2)) 

P(X₁ ≠ 0, X₂ ≠ 0, X₃ ≠ 0, X₄ = 0) = (1 - e^(-2))³ * e^(-2) 

Now, adding all these terms together: 

Total probability = 4 * e^(-2) * (1 - e^(-2))³ 

This is the probability that exactly one of the Xₖ's equals 0. Thus, the answer is: 

P(exactly one Xₖ = 0) = 4 * e^(-2) * (1 - e^(-2))³ 

This is the final probability, expressed in terms of e^(-2). You can compute the exact 

numerical value by evaluating this expression, or you can leave it in this form as the exact 

answer. 

Now, let's redefine the random variable to make use of the binomial distribution concept. 

Let Yᵢ be a random variable defined as follows: 

Yᵢ = 1 if Xᵢ = 0, 

Yᵢ = 0 if Xᵢ ≠ 0. 

 

 



In this case, Yᵢ is a Bernoulli random variable. We know the following probabilities: 

P(Xᵢ = 0) = e^(-2), 

P(Xᵢ ≠ 0) = 1 - e^(-2). 

So, the probability mass function for Yᵢ is: 

P(Yᵢ = 1) = e^(-2) (since Yᵢ = 1 implies Xᵢ = 0), 

P(Yᵢ = 0) = 1 - e^(-2) (since Yᵢ = 0 implies Xᵢ ≠ 0). 

Now, consider the sum of these random variables: 

W = Y₁ + Y₂ + Y₃ + Y₄. 

This sum W follows a binomial distribution with parameters n = 4 (the number of trials) 

and p = e^(-2) (the probability of success, i.e., Yᵢ = 1). 

The binomial distribution gives the probability mass function: 

P(W = w) = (4 choose w) * (e^(-2))^w * (1 - e^(-2))^(4 - w), for w = 0, 1, 2, 3, 4. 

Now, we are asked to find the probability that exactly one of the Xₖ's is equal to 0. This is 

equivalent to the probability that exactly one of the Y₁, Y₂, Y₃, Y₄ variables equals 1. 

In other words, we want the probability that the sum W = 1. Thus, the probability is: 

P(W = 1) = (4 choose 1) * (e^(-2))^1 * (1 - e^(-2))³. 

We can now compute each part: 

(4 choose 1) = 4, 

(e^(-2))^1 = e^(-2), 

(1 - e^(-2))³ remains as it is. 

So, the final probability is: 

P(W = 1) = 4 * e^(-2) * (1 - e^(-2))³. 

This is the desired probability that exactly one of the Xₖ's is equal to 0. You can compute 

this value numerically using a calculator or leave it in this form as the exact result. This is 

a different approach to solving this problem. 

 



 

 

We explicitly computed the probability, but this approach is more general. It involves 

adding multiple terms and finding their values. However, if the problem asks something 

different, such as the sum of two Xᵢ being 1 and the remaining Xᵢ being exactly 0, we would 

need to use the binomial concept. In such cases, we must apply transformation techniques. 

This is part of the concept of transformation of random variables, which we will explore in 

upcoming lectures. 

Transformation of random variables can be useful for calculating probabilities. This is the 

concept we applied in the previous example, and now we will discuss another numerical 

example. 

Let X, Y, and Z be independent uniform random variables over the interval [0, 1]. We are 

asked to compute the probability that Z ≥ XY. In the previous example, we worked with 

discrete random variables, but here we are dealing with continuous random variables. 

Let X, Y, and Z be independent uniform random variables over the interval [0, 1]. Since 

they are independent and identically distributed, their marginal probability density 

functions are the same. The probability density function for X is: 

f_X(x) = 1 for 0 ≤ x ≤ 1, and 0 otherwise. 

This is true for Y and Z as well. 

Thus, the marginal probability density function for Y is: 

f_Y(y) = 1 for 0 ≤ y ≤ 1, and 0 otherwise. 

And similarly, the marginal probability density function for Z is: 

f_Z(z) = 1 for 0 ≤ z ≤ 1, and 0 otherwise. 



Since the random variables are independent, we can calculate the joint probability density 

function by multiplying the individual PDFs. 

Therefore, the joint probability density function is: 

f_X,Y,Z(x, y, z) = 1 for 0 ≤ x, y, z ≤ 1, and 0 otherwise. 

The joint probability density function of X, Y, and Z is given by f_X,Y,Z(x, y, z). Since 

these are independent random variables, we know that the joint probability density function 

can be obtained by multiplying the individual probability density functions: f_X, f_Y, and 

f_Z. As we have already determined, each of these is 1 in the interval [0, 1] and 0 otherwise. 

 

 

 

Therefore, the joint probability density function is: f_X,Y,Z(x, y, z) = 1 for 0 ≤ x, y, z ≤ 1, 

and 0 otherwise. Now that we know the joint probability density function, we can compute 

the probability that Z ≥ XY. To compute this, we need to evaluate the integral over the 

region where Z ≥ XY in three-dimensional space. 

We will integrate over the region where X, Y, and Z satisfy the condition Z ≥ XY. The 

integral we need to compute is: P(Z ≥ XY) = ∫∫∫ f_X,Y,Z(x, y, z) dz dy dx. Since we know 

that the joint probability density function is 1, this simplifies to: P(Z ≥ XY) = ∫∫∫ dz dy dx. 

The region of integration for Z is from XY to 1, and for X and Y, the limits are from 0 to 

1. Therefore, we can write the integral as: P(Z ≥ XY) = ∫₀¹ ∫₀¹ ∫ₓᵧ¹ dz dy dx. 

First, integrate with respect to z: ∫ₓᵧ¹ dz = 1 - XY. 

Now the integral becomes: P(Z ≥ XY) = ∫₀¹ ∫₀¹ (1 - XY) dy dx. 



Next, integrate with respect to y: ∫₀¹ (1 - XY) dy = y - Xy²/2 evaluated from 0 to 1 = 1 - 

X/2. 

So the integral now is: P(Z ≥ XY) = ∫₀¹ (1 - X/2) dx. 

Finally, integrate with respect to x: ∫₀¹ (1 - X/2) dx = x - X²/4 evaluated from 0 to 1 = 1 - 

1/4 = 3/4. 

Thus, P(Z ≥ XY) = 3/4. Hopefully, you now understand how to compute such probabilities 

using the joint probability density function. 

This is just one example, and you can refer to additional resources to practice more 

examples. By solving more problems, you will gain a clearer understanding. If you have 

any doubts, feel free to clarify them through practice. Next, we will discuss another 

numerical example. 

 

 


