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Numerical Examples on Joint Probability Density Functions 

 

Let us discuss another numerical example for continuous random variables in the 

multivariate case. Here, we are given the joint probability density function. Let X, Y, and 

Z be a trivariate random variable with the joint probability density function given by: 

f(x, y, z) = k * e^(ax + by + cz), 

where a, b, and c are constants, and k is a constant to be determined. 

The questions are as follows: 

1. Determine the value of k. 

2. Find the marginal joint probability density function of X and Y. 

3. Find the marginal probability density function of X. 

4. Check if X, Y, and Z are independent. 

Let us begin by writing down the joint probability density function: 

f(x, y, z) = k * e^(ax + by + cz). 

This is the problem setup. We will first determine the value of k, then proceed to find the 

marginal joint probability density functions, and finally check the independence of X, Y, 

and Z. So, we have the joint probability density function: 

 



 

 

f(x, y, z) = k * e^(-ax + by + cz), where 0 < x, y, z < ∞, and 0 < a, b, c < ∞. Also, k is a 

constant. 

a, b, c are given values that can be any value between 0 and ∞. We need to determine k, a 

constant. 

To find the value of k, we must satisfy the conditions for a probability density function: 

1. f(x, y, z) ≥ 0, so k ≥ 0. 

2. ∫∫∫ f(x, y, z) dx dy dz = 1 over the range 0 < x, y, z < ∞. 

This means: 

∫∫∫ [k * e^(-ax + by + cz)] dx dy dz = 1. 

Since f(x, y, z) = 0 for x, y, z < 0, we integrate from 0 to ∞: 

k * ∫₀^∞ ∫₀^∞ ∫₀^∞ e^(-ax + by + cz) dx dy dz = 1. 

First, integrate with respect to x: 

∫₀^∞ e^(-ax) dx = 1/a. 

This leaves: k * (1/a) * ∫₀^∞ ∫₀^∞ e^(-by + cz) dy dz = 1. 

Next, integrate with respect to y: 

∫₀^∞ e^(-by) dy = 1/b. 

This leaves: k * (1/a) * (1/b) * ∫₀^∞ e^(-cz) dz = 1. 



Finally, integrate with respect to z: 

∫₀^∞ e^(-cz) dz = 1/c. 

This results in: k * (1/a) * (1/b) * (1/c) = 1. 

Solving for k gives: k = abc. 

The joint probability density function is: 

f(x, y, z) = (1/abc) * e^(-ax + by + cz). 

Now, let’s find the marginal joint probability density function of X and Y. 

 

 

 

A marginal probability density function is obtained by integrating the joint probability 

density function over the remaining variable. In this case, we have three variables: X, Y, 

and Z. To find the marginal joint probability density function of X and Y, we need to 

integrate the joint probability density function f(x, y, z) with respect to Z. 

The marginal joint probability density function of X and Y is given by: 

fₓᵧ(x, y) = ∫ f(x, y, z) dz. 

We already know the joint probability density function f(x, y, z), which is: 

f(x, y, z) = (1/abc) * e^(-ax + by + cz). 

To find fₓᵧ(x, y), we integrate with respect to z: 

fₓᵧ(x, y) = ∫₀^∞ (1/abc) * e^(-ax + by + cz) dz. 



Since e^(-ax + by) is independent of z, we can take it outside the integration: 

fₓᵧ(x, y) = (1/abc) * e^(-ax + by) * ∫₀^∞ e^(-cz) dz. 

Now, integrate e^(-cz) with respect to z from 0 to ∞: 

∫₀^∞ e^(-cz) dz = 1/c. 

So, we have: 

fₓᵧ(x, y) = (1/abc) * e^(-ax + by) * (1/c). 

Simplifying, we get: 

fₓᵧ(x, y) = (ab/c) * e^(-ax + by). 

This is the marginal joint probability density function of X and Y. Note that this is true 

when x > 0 and y > 0. Otherwise, the density function is 0. 

So, we can express the marginal joint probability density function of X and Y as: 

fₓᵧ(x, y) = (ab/c) * e^(-ax + by), for x > 0 and y > 0, 

and 0 otherwise. 

This is the marginal joint probability density function of X and Y. 

Next, let’s find the marginal probability density function of X. The marginal probability 

density function of X is given by: 

 

 

 



fₓ(x) = ∫∫ fₓᵧ(x, y, z) dy dz. We want to keep the variable X, so we integrate over the 

remaining variables Y and Z. The limits for X are from 0 to ∞. Thus, the marginal 

probability density function of X is: 

fₓ(x) = ∫₀^∞ ∫₀^∞ fₓᵧ(x, y, z) dy dz. 

We already know that the joint probability density function fₓᵧ(x, y, z) is: 

fₓᵧ(x, y, z) = (1/abc) * e^(-ax + by + cz). 

Now, we need to integrate with respect to y and z while keeping x constant. This gives us: 

fₓ(x) = (1/abc) * e^(-ax) ∫₀^∞ ∫₀^∞ e^(by + cz) dy dz. 

We can factor out e^(-ax) because it is independent of y and z. Now, we integrate e^(by) 

with respect to y and e^(cz) with respect to z. The integration results in: 

∫₀^∞ e^(by) dy = 1/b and ∫₀^∞ e^(cz) dz = 1/c. 

Thus, we have: 

fₓ(x) = (1/abc) * e^(-ax) * (1/b) * (1/c). 

Simplifying, we get: 

fₓ(x) = a * e^(-ax). 

This is the marginal probability density function of X. Note that this is true when x > 0, 

and it is 0 otherwise. 

So, the marginal probability density function of X is: 

fₓ(x) = a * e^(-ax), for x > 0, and 0 otherwise. 

Similarly, we can find the marginal probability density functions of Y and Z by symmetry. 

The marginal probability density function of Y is: 

fᵧ(y) = b * e^(-by), for y > 0, and 0 otherwise. 

 



 

 

The marginal probability density function of Z is: 

fᵩ(z) = c * e^(-cz), for z > 0, and 0 otherwise. 

Now, we can check whether X, Y, and Z are independent. To determine if X, Y, and Z are 

independent, we need to check if the joint probability density function can be expressed as 

the product of the marginal probability density functions. 

The joint probability density function is: 

fₓᵧᵩ(x, y, z) = abc * e^(-ax + by + cz), for x > 0, y > 0, z > 0, and 0 otherwise. 

Next, we multiply the marginal probability density functions: 

fₓ(x) * fᵧ(y) * fᵩ(z) = (a * e^(-ax)) * (b * e^(-by)) * (c * e^(-cz)). 

Simplifying this, we get: 

fₓ(x) * fᵧ(y) * fᵩ(z) = abc * e^(-ax + by + cz). 

This is exactly the same as the joint probability density function. Therefore, we can 

conclude that the joint probability density function can be written as the product of the 

marginal probability density functions. 

Since fₓᵧᵩ(x, y, z) = fₓ(x) * fᵧ(y) * fᵩ(z) for all x, y, z ∈ ℝ³, we can say that X, Y, and Z are 

independent random variables. 

This is the conclusion that X, Y, and Z are independent. Hence, this implies that X, Y, and 

Z are independent random variables. 

 



 

 

This is the last question we covered. I hope you have understood from these numerical 

examples how multivariate random variables are defined as independent random variables, 

how to check for independence, and how to determine the properties of the joint probability 

density function. We used these properties to find the values of k and to compute the sum 

of the probabilities. In the discrete case, we found the sum of the probabilities, and in the 

continuous case, we computed the probability P(Z ≥ XY) using the joint probability density 

function. 

I hope this explanation is clear. Next, we will discuss some special distribution functions 

in the multivariate random variable case. We have already covered some discrete random 

variables, such as Poisson, binomial, and Bernoulli distributions. In the continuous case, 

we discussed uniform, exponential, gamma, and normal distributions. Here, we will focus 

on one discrete random variable and one continuous random variable in the multivariate 

case. 

 


